設(shè)橢圓+=1(a>b>0)的左焦點(diǎn)為F,離心率為,過點(diǎn)F且與x軸垂直的直線被橢圓截得的線段長為.
(1)求橢圓的方程;
(2)設(shè)A,B分別為橢圓的左、右頂點(diǎn),過點(diǎn)F且斜率為k的直線與橢圓交于C,D兩點(diǎn).若·+·=8,求k的值.
(1) +=1 (2) k=±
解析解:(1)設(shè)F(-c,0),由=,知a=c.
過點(diǎn)F且與x軸垂直的直線為x=-c,
代入橢圓方程有+=1,
解得y=±,
于是=,解得b=,
又a2-c2=b2,從而a=,c=1,
所以橢圓的方程為+=1.
(2)設(shè)點(diǎn)C(x1,y1),D(x2,y2),
由F(-1,0)得直線CD的方程為y=k(x+1).
由方程組消去y,整理得(2+3k2)x2+6k2x+3k2-6=0,
則x1+x2=-,x1x2=.
因為A(-,0),B(,0),
所以·+·=(x1+,y1)·(-x2,-y2)+(x2+,y2)·(-x1,-y1)=6-2x1x2-2y1y2=6-2x1x2-2k2(x1+1)(x2+1)
=6-(2+2k2)x1x2-2k2(x1+x2)-2k2=6+.
由已知得6+=8,解得k=±.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓=1(a>b>0)的離心率為,且過點(diǎn)A(0,1).
(1)求橢圓的方程;
(2)過點(diǎn)A作兩條互相垂直的直線分別交橢圓于點(diǎn)M、N,求證:直線MN恒過定點(diǎn)P.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知點(diǎn)D(0,-2),過點(diǎn)D作拋物線:的切線l,切點(diǎn)A在第二象限。
(1)求切點(diǎn)A的縱坐標(biāo);
(2)若離心率為的橢圓恰好經(jīng)過A點(diǎn),設(shè)切線l交橢圓的另一點(diǎn)為B,若設(shè)切線l,直線OA,OB的斜率為k,,①試用斜率k表示②當(dāng)取得最大值時求此時橢圓的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知左焦點(diǎn)為F(-1,0)的橢圓過點(diǎn)E(1,).過點(diǎn)P(1,1)分別作斜率為k1,k2的橢圓的動弦AB,CD,設(shè)M,N分別為線段AB,CD的中點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若P為線段AB的中點(diǎn),求k1;
(3)若k1+k2=1,求證直線MN恒過定點(diǎn),并求出定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)拋物線的焦點(diǎn)為,點(diǎn),線段的中點(diǎn)在拋物線上. 設(shè)動直線與拋物線相切于點(diǎn),且與拋物線的準(zhǔn)線相交于點(diǎn),以為直徑的圓記為圓.
(1)求的值;
(2)證明:圓與軸必有公共點(diǎn);
(3)在坐標(biāo)平面上是否存在定點(diǎn),使得圓恒過點(diǎn)?若存在,求出的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)、,若動點(diǎn)滿足.
(1)求動點(diǎn)的軌跡曲線的方程;
(2)在曲線上求一點(diǎn),使點(diǎn)到直線:的距離最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓的圓心在坐標(biāo)原點(diǎn)O,且恰好與直線相切.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)A為圓上一動點(diǎn),AN軸于N,若動點(diǎn)Q滿足(其中m為非零常數(shù)),試求動點(diǎn)的軌跡方程.
(3)在(2)的結(jié)論下,當(dāng)時,得到動點(diǎn)Q的軌跡曲線C,與垂直的直線與曲線C交于 B、D兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,等邊三角形OAB的邊長為8,且其三個頂點(diǎn)均在拋物線E:x2=2py(p>0)上.
(1)求拋物線E的方程;
(2)設(shè)動直線l與拋物線E相切于點(diǎn)P,與直線y=-1相交于點(diǎn)Q,證明以PQ為直徑的圓恒過y軸上某定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線的中心為原點(diǎn),左、右焦點(diǎn)分別為、,離心率為,點(diǎn)是直線上任意一點(diǎn),點(diǎn)在雙曲線上,且滿足.
(1)求實(shí)數(shù)的值;
(2)證明:直線與直線的斜率之積是定值;
(3)若點(diǎn)的縱坐標(biāo)為,過點(diǎn)作動直線與雙曲線右支交于不同的兩點(diǎn)、,在線段上去異于點(diǎn)、的點(diǎn),滿足,證明點(diǎn)恒在一條定直線上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com