已知函數(shù),.
(1)求函數(shù)的最小值;
(2)若,證明:當(dāng)時(shí),.
(1)h(0)=0;(2)證明過程詳見解析.
解析試題分析:本題主要考查導(dǎo)數(shù)的運(yùn)算、利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性、利用導(dǎo)數(shù)求函數(shù)的最值、不等式的基本性質(zhì)等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計(jì)算能力,考查學(xué)生的函數(shù)思想.第一問,先得到表達(dá)式,對求導(dǎo),利用“單調(diào)遞增;單調(diào)遞減”解不等式求函數(shù)的單調(diào)區(qū)間,利用函數(shù)的單調(diào)性確定最小值所在的位置;第二問,先將和代入到所求的式子中,得到①式,再利用第一問的結(jié)論,即,即得到,通過且得,在上式中兩邊同乘得到②式,若成立則所求證的表達(dá)式成立,所以構(gòu)造函數(shù)φ(t)=(1-t)k-1+kt,證明即可.
(1)h(x)=f(x)-g(x)=ex-1-x,h¢(x)=ex-1.
當(dāng)x∈(-∞,0)時(shí),h¢(x)<0,h(x)單調(diào)遞減;
當(dāng)x∈(0,+∞)時(shí),h¢(x)>0,h(x)單調(diào)遞增.
當(dāng)x=0時(shí),h(x)取最小值h(0)=0. 4分
(2)即. ①
由(1)知,,即,
又,則.
所以. ② 7分
設(shè)φ(t)=(1-t)k-1+kt,t∈[0,1].
由k>1知,當(dāng)t∈(0,1)時(shí),φ¢(t)=-k(1-t)k-1+k=k[1-(1-t)k]>0,
φ(t)在[0,1]單調(diào)遞增,當(dāng)t∈(0,1)時(shí),φ(t)>φ(0)=0.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/56/a/ri9kn.png" style="vertical-align:middle;" />,所以,
因此不等式②成立,從而不等式①成立. 12分
考點(diǎn):導(dǎo)數(shù)的運(yùn)算、利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性、利用導(dǎo)數(shù)求函數(shù)的最值、不等式的基本性質(zhì).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x2-alnx(a∈R).
(1)若函數(shù)f(x)的圖象在x=2處的切線方程為y=x+b,求a,b的值;
(2)若函數(shù)f(x)在(1,+∞)上為增函數(shù),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(1)討論在內(nèi)和在內(nèi)的零點(diǎn)情況.
(2)設(shè)是在內(nèi)的一個(gè)零點(diǎn),求在上的最值.
(3)證明對恒有.[來
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù) ().
(1)若,求函數(shù)的極值;
(2)設(shè).
① 當(dāng)時(shí),對任意,都有成立,求的最大值;
② 設(shè)的導(dǎo)函數(shù).若存在,使成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)在區(qū)間內(nèi)的最大值;
(2)當(dāng)時(shí),方程有唯一實(shí)數(shù)解,求正數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中.
(1)若,求函數(shù)的極值;
(2)當(dāng)時(shí),試確定函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知的導(dǎo)函數(shù)的簡圖,它與軸的交點(diǎn)是(0,0)和(1,0),
又
(1)求的解析式及的極大值.
(2)若在區(qū)間(m>0)上恒有≤x成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)滿足(其中為在點(diǎn)處的導(dǎo)數(shù),為常數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間
(2)設(shè)函數(shù),若函數(shù)在上單調(diào),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com