點(diǎn)P的坐標(biāo)為(1,2),
AB
=(1,2)
,則( 。
A、點(diǎn)P與點(diǎn)A重合
B、點(diǎn)P與點(diǎn)B重合
C、點(diǎn)P就表示
AB
D、
OP
=
AB
考點(diǎn):向量的幾何表示
專題:平面向量及應(yīng)用
分析:由點(diǎn)P的坐標(biāo)得出向量
OP
的坐標(biāo),從而得出
OP
=
AB
解答: 解:∵點(diǎn)P的坐標(biāo)為(1,2),
OP
=(1,2);
又∵
AB
=(1,2)
,
OP
=
AB

故選:D.
點(diǎn)評(píng):本題考查了平面向量的坐標(biāo)表示的問題,解題時(shí)應(yīng)區(qū)分平面向量的坐標(biāo)表示與平面內(nèi)的點(diǎn)的坐標(biāo)的區(qū)別,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
b
夾角為60°,|
a
|=2
,|
b
|=3
,則(2
a
-
b
)•
a
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+bx+c,且f(1)=0.
(1)若函數(shù)f(x)是偶函數(shù),求f(x)的解析式;
(2)要使函數(shù)f(x)在區(qū)間[-1,3]上單調(diào)遞增,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過直線l1:2x-3y+2=0與l2:3x-4y-2=0的交點(diǎn)且與4x+y-4=0平行的直線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ex,x≤1
f(x-1),x>1
,則f(ln3)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

tan(α+β)=
2
3
,tan(α-
π
5
)=4
,則tan(β+
π
5
)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我們把滿足不等式f(
x1+x2
2
)≤
f(x1)+f(x2)
2
的函數(shù)叫做高青函數(shù).在給定的下列函數(shù)中:
①f(x)=x;②f(x)=x+
2
x
(x>0);③f(x)=x2;④f(x)=2x;⑤f(x)=(
1
3
)x
;⑥f(x)=log2x;⑦f(x)=log
1
3
x,請(qǐng)解答下面兩個(gè)問題:
(1)上述7個(gè)函數(shù)中有幾個(gè)是高青函數(shù)?
(2)針對(duì)指數(shù)函數(shù)中的某個(gè)高青函數(shù),證明其滿足上述不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a=log75,b=log67,則a、b的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在空間直角坐標(biāo)系O-xyz中,點(diǎn)(-2,0,4)關(guān)于y軸的對(duì)稱點(diǎn)是(  )
A、(-2,0,-4)
B、(2,0,-4)
C、(4,0,-2)
D、(2,0,4)

查看答案和解析>>

同步練習(xí)冊(cè)答案