橢圓有這樣的光學性質(zhì):從橢圓的一個焦點出發(fā)的光線,經(jīng)橢圓反射后,反射光線經(jīng)過橢圓的另一個焦點,今有一個水平放置的橢圓形臺球盤,點、是它的焦點,長軸長為,焦距為,靜放在點的小球(小球的半徑不計),從點沿直線出發(fā),經(jīng)橢圓壁反彈后第一次回到點時,小球經(jīng)過的路程是
A.B.C.D.以上答案均有可能
D
⑴靜放在點的小球(小球的半徑不計)從點沿直線出發(fā),經(jīng)橢圓壁右頂點反彈后第一次回到點時,小球經(jīng)過的路程是,則選B;⑵靜放在點的小球(小球的半徑不計)從點沿直線出發(fā),經(jīng)橢圓壁左頂點反彈后第一次回到點時,小球經(jīng)過的路程是,則選C;⑶靜放在點的小球(小球的半徑不計)從點沿直線出發(fā),經(jīng)橢圓壁非左右頂點反彈后第一次回到點時,小球經(jīng)過的路程是,則選A.于是三種情況均有可能,故選D.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的中心在坐標原點O,焦點在坐標軸上,直線y=x+1與該橢圓相交于PQ,且OPOQ,|PQ|=.求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分) 直角三角形的直角頂點為動點,,為兩個定點,作,動點滿足,當點運動時,設點的軌跡為曲線,曲線軸正半軸的交點為.(Ⅰ) 求曲線的方程;(Ⅱ) 是否存在方向向量為m的直線,與曲線交于,兩點,使,且的夾角為?若存在,求出所有滿足條件的直線方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(文) 已知橢圓的離心率為,直線ly=x+2與以原點為圓心、橢圓C1的短半軸長為半徑的圓O相切.(1)求橢圓C1的方程;(2)設橢圓C1的左焦點為F1,右焦點為F2,直線l1過點F1,且垂直于橢圓的長軸,動直線l2垂直于l1,垂足為點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程;(3)過橢圓C1的左頂點A做直線m,與圓O相交于兩點R、S,若是鈍角三角形,求直線m的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

正四面體P-ABC中,點M在面PBC內(nèi),且點M到點P的距離等于點M到底面ABC的距離則動點M在面PBC的軌跡是( 。
A.拋物線的一部分B.橢圓的一部分
C.雙曲線的一部分D.圓的一部分

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,直角梯形ABCD中∠DAB=90°,ADBC,AB=2,AD=
3
2
,BC=
1
2
.橢圓G以A、B為焦點且經(jīng)過點D.
(Ⅰ)建立適當坐標系,求橢圓G的方程;
(Ⅱ)若點E滿足
EC
=
1
2
AB
,問是否存在不平行AB的直線l與橢圓G交于M、N兩點且|ME|=|NE|,若存在,求出直線l與AB夾角正切值的范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在焦點在x軸的橢圓過點P(3,0),且長軸長是短軸長的3倍,則其標準方程為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

為定直線外一定點,以為焦點,為相應準線的橢圓有(       )
A.B.2個C.3個D.無數(shù)個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若橢圓的兩個焦點為,長軸長為,則橢圓的方程為        。

查看答案和解析>>

同步練習冊答案