已知函數(shù),為實數(shù))有極值,且在處的切線與直線平行.
(1)求實數(shù)a的取值范圍;
(2)是否存在實數(shù)a,使得函數(shù)的極小值為1,若存在,求出實數(shù)a的值;若不存在,請說明理由;
(3)設(shè)
求證:.
(1)實數(shù)a的取值范圍是
(2)的極小值為1
(3)證明見解析。
(1)
由題意
① …………………………………………………………2分
②
由①、②可得,
故實數(shù)a的取值范圍是…………………………………4分 (2)存在 ………………………………………5分
由(1)可知,
+ | 0 | - | 0 | + | |
單調(diào)增 | 極大值 | 單調(diào)減 | 極小值 | 單調(diào)增 |
,
.……………………………………………………7分
……………………………………8分
的極小值為1.………………………………9分
(3)
…………………………………………………10分
∴其中等號成立的條件為.……………………………………………………13分. ……………………………………………14分
另證:當(dāng)n=1時,左=0,右=0,原不等式成立. …………………………………11分
假設(shè)n=k ()時成立,即
即當(dāng)時原不等式成立.……………………………………………………13分
綜上當(dāng)成立. …………………………………14分
………………14分
科目:高中數(shù)學(xué) 來源:2010-2011年遼寧省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題滿分12分)
已知函數(shù),為實數(shù))有極值,且在處的切線與直線平行.
(I)求實數(shù)a的取值范圍;
(II)是否存在實數(shù)a,使得函數(shù)的極小值為1,若存在,求出實數(shù)a的值;若不存
在,請說明理由;
(Ⅲ)設(shè)
求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年廣州市七區(qū)聯(lián)考高二數(shù)學(xué)(理)下學(xué)期期末監(jiān)測 題型:解答題
(本小題滿分14分)
已知函數(shù),為實數(shù))有極值,且在處的切線與直線平行.
(1)求實數(shù)a的取值范圍;
(2)設(shè),的導(dǎo)數(shù)為,令
求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年廣州市七區(qū)聯(lián)考高二數(shù)學(xué)(文)下學(xué)期期末監(jiān)測 題型:解答題
(本小題滿分14分)
已知函數(shù),為實數(shù))有極值,且在處的切線與直線平行.
(1)求實數(shù)a的取值范圍;
(2)是否存在實數(shù)a,使得函數(shù)的極小值為1,若存在,求出實數(shù)a的值;若不存在,請說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分) 已知函數(shù),為實數(shù))有極值,且在處的切線與直線平行.
(I)求實數(shù)a的取值范圍;
(II)是否存在實數(shù)a,使得函數(shù)的極小值為1,若存在,求出實數(shù)a的值;若不存
在,請說明理由;
(Ⅲ)設(shè)
求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com