已知函數(shù)上為增函數(shù),且,求解下列各題:
(1)求的取值范圍;
(2)若上為單調(diào)增函數(shù),求的取值范圍;
(3)設(shè),若在上至少存在一個(gè),使得成立,求的取值范圍.

(1);(2); (3)

解析試題分析:(1)上為增函數(shù),則上恒成立,即上恒成立.由于分母恒大于0,故上恒成立,而這只需 的最小值即可.由此可得的取值范圍;
(2)上為單調(diào)增函數(shù),則其導(dǎo)數(shù)大于等于0在恒成立,變形得恒成立.與(1)題不同的是,這里不便求的最小值,故考慮分離參數(shù),即變形為.這樣只需大于等于的最大值即可.而,所以;
(3)構(gòu)造新函數(shù),這樣問(wèn)題轉(zhuǎn)化為:在上至少存在一個(gè),使得成立,求的取值范圍.而這只要的最大值大于0即可.
試題解析:(1)∵上為增函數(shù)
上恒成立,即上恒成立

上恒成立                     2分
只須,即,由            3分
    ∴                        4分
(2)由(1)問(wèn)得

上為單調(diào)增函數(shù)
恒成立                      6分
,而
恒成立時(shí)有,即函數(shù)上為單調(diào)增函數(shù)時(shí),的范圍為;                       8分
(3)由(1)問(wèn)可知,,可以構(gòu)造新函數(shù)              10分
①.當(dāng)時(shí),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)求的單調(diào)遞減區(qū)間;
(2)若在區(qū)間上的最大值為,求它在該區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,某小區(qū)有一邊長(zhǎng)為2(單位:百米)的正方形地塊OABC,其中OAE是一個(gè)游泳池,計(jì)劃在地塊OABC內(nèi)修一條與池邊AE相切的直路(寬度不計(jì)),切點(diǎn)為M,并把該地塊分為兩部分.現(xiàn)以點(diǎn)O為坐標(biāo)原點(diǎn),以線段OC所在直線為x軸,建立平面直角坐標(biāo)系,若池邊AE滿(mǎn)足函數(shù)的圖象,且點(diǎn)M到邊OA距離為

(1)當(dāng)時(shí),求直路所在的直線方程;
(2)當(dāng)為何值時(shí),地塊OABC在直路不含泳池那側(cè)的面積取到最大,最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知實(shí)數(shù)函數(shù)為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間及最小值;
(Ⅱ)若對(duì)任意的恒成立,求實(shí)數(shù)的值;
(Ⅲ)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),其中,
(Ⅰ)若的最小值為,試判斷函數(shù)的零點(diǎn)個(gè)數(shù),并說(shuō)明理由;
(Ⅱ)若函數(shù)的極小值大于零,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ).求函數(shù)的單調(diào)區(qū)間及的取值范圍;
(Ⅱ).若函數(shù)有兩個(gè)極值點(diǎn)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)a為實(shí)數(shù),函數(shù)f(x)=ex-2x+2a,x∈R.
(Ⅰ)求f(x)的單調(diào)區(qū)間與極值;
(Ⅱ)求證:當(dāng)a>ln2-1且x>0時(shí),ex>x2-2ax+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)為自然對(duì)數(shù)的底)
(1)求的最小值;
(2)設(shè)不等式的解集為,且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,對(duì)定義域內(nèi)任意x,均有恒成立,求實(shí)數(shù)a的取值范圍?
(Ⅲ)證明:對(duì)任意的正整數(shù),恒成立。

查看答案和解析>>

同步練習(xí)冊(cè)答案