已知函數(shù)f(x)=ax3+bx2-3x(a,b∈R)在點(diǎn)(1,f(1))處的切線方程為y+2=0.
(I)求函數(shù)f(x)的解析式;
(II)若經(jīng)過(guò)點(diǎn)M(2,m)可以作出曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.
【答案】分析:(I)欲確定函數(shù)的表達(dá)式,先求導(dǎo)數(shù)fˊ(x),再根據(jù)導(dǎo)數(shù)的幾何意義求出切線的斜率,最后由函數(shù)圖象過(guò)點(diǎn)(1,-2)及斜率列出方程求出a,b,即可求函數(shù)f(x)的解析式;
(II)先設(shè)切點(diǎn)為(x,y),根據(jù)導(dǎo)數(shù)的幾何是切線的斜率,列出關(guān)于(x,的一個(gè)方程,然后根據(jù)此方程必須有三個(gè)不同的實(shí)數(shù)解,結(jié)合相應(yīng)函數(shù)有三個(gè)不同的零點(diǎn),最后利用函數(shù)的極值點(diǎn)列出不等關(guān)系即可求實(shí)數(shù)m的取值范圍.
解答:解:(I)f'(x)=3ax2+2bx-3.(2分)
根據(jù)題意,得
解得
所以f(x)=x3-3x.(4分)
(II)設(shè)切點(diǎn)為(x,y),則y=x3-3x,f'(x)=3x2-3,切線的斜率為3x2-3
則3x2-3=,即2x3-6x2+6+m=0.(6分)
∵過(guò)點(diǎn)M(2,m)(m≠2)可作曲線y=f(x)的三條切線,
∴方程2x3-6x2+6+m=0有三個(gè)不同的實(shí)數(shù)解,(8分)
∴函數(shù)g(x)=2x3-6x2+6+m有三個(gè)不同的零點(diǎn),
∴g(x)的極大值為正、極小值為負(fù)(10分)
則g'(x)=6x2-12x.令g'(x)=0,則x=0或x=2,列表:

,解得實(shí)數(shù)m的取值范圍是-6<m<2.(12分)
點(diǎn)評(píng):本小題主要考查利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程、利用導(dǎo)數(shù)研究函數(shù)的極值、函數(shù)的零點(diǎn)、直線的方程等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過(guò)原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過(guò)點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案