已知定義域?yàn)镽的函數(shù)f(x)=
b-2x2x-a
是奇函數(shù).
(1)求a,b的值,并判斷f(x)的單調(diào)性;
(2)若對(duì)于任意t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范圍.
分析:(1)由奇函數(shù)性質(zhì)得:f(0)=0,f(-1)=-f(1),可求出a,b值,根據(jù)單調(diào)性的定義即可作出判斷;
(2)由函數(shù)的奇偶性、單調(diào)性可去掉不等式中的符號(hào)“f”,變?yōu)榫唧w不等式恒成立,從而可轉(zhuǎn)化為函數(shù)最值問題解決.
解答:解:(1)∵f(x)為R上的奇函數(shù),∴f(0)=0,b=1.
又f(-1)=-f(1),得a=-1.
經(jīng)檢驗(yàn)a=-1,b=1符合題意.
任取x1,x2∈R,且x1<x2,
  則f(x1)-f(x2)=
1-2x1
2x1+1
-
1-2x2
2x2+1
=
2(2x2-2x1)
(2x1+1)(2x2+1)

∵x1<x2,∴2x2-2x1>0,又(2x1+1)(2x2+1)>0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2),
所以f(x)為R上的減函數(shù).
(2)因?yàn)椴坏仁絝(t2-2t)+f(2t2-k)<0恒成立,
所以f(t2-2t)<-f(2t2-k),
因?yàn)閒(x)為奇函數(shù),所以f(t2-2t)<f(k-2t2),
又f(x)為減函數(shù),所以t2-2t>k-2t2,即k<3t2-2t恒成立,
而3t2-2t=3(t-
1
3
)2
-
1
3
≥-
1
3
,
所以k<-
1
3
點(diǎn)評(píng):本題考查函數(shù)的奇偶性、單調(diào)性及其應(yīng)用,考查不等式恒成立問題,關(guān)于函數(shù)的奇偶性、單調(diào)性常利用定義解決,而恒成立問題則轉(zhuǎn)化為函數(shù)最值問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010•石家莊二模)已知定義域?yàn)镽的函數(shù)f(x)在(1,+∞)上為減函數(shù),且函數(shù)y=f(x+1)為偶函數(shù),則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)滿足f(x)f(x+2)=5,若f(2)=3,則f(2012)=
5
3
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)在(4,+∞)上為減函數(shù),且函數(shù)y=f(x)的對(duì)稱軸為x=4,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)=
-2x+a2x+1
是奇函數(shù)
(1)求a值;
(2)判斷并證明該函數(shù)在定義域R上的單調(diào)性;
(3)若對(duì)任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實(shí)數(shù)k的取值范圍;
(4)設(shè)關(guān)于x的函數(shù)F(x)=f(4x-b)+f(-2x+1)有零點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)滿足f(4-x)=-f(x),當(dāng)x<2時(shí),f(x)單調(diào)遞減,如果x1+x2>4且(x1-2)(x2-2)<0,則f(x1)+f(x2)的值( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案