【題目】已知函數(shù)
(1)若,試討論的單調(diào)性;
(2)若,實數(shù)為方程的兩不等實根,求證:.
【答案】(1)答案不唯一,具體見解析(2)證明見解析
【解析】
(1)根據(jù)題意得,分與討論即可得到函數(shù)的單調(diào)性;
(2)根據(jù)題意構(gòu)造函數(shù),得,參變分離得,
分析不等式,即轉(zhuǎn)化為,設(shè),再構(gòu)造函數(shù),利用導(dǎo)數(shù)得單調(diào)性,進而得證.
(1)依題意,當(dāng)時,,
①當(dāng)時,恒成立,此時在定義域上單調(diào)遞增;
②當(dāng)時,若,;若,;
故此時的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.
(2)方法1:由得
令,則,
依題意有,即,
要證,只需證(不妨設(shè)),
即證,
令,設(shè),則,
在單調(diào)遞減,即,從而有.
方法2:由得
令,則,
當(dāng)時,時,
故在上單調(diào)遞增,在上單調(diào)遞減,
不妨設(shè),則,
要證,只需證,易知,
故只需證,即證
令,(),
則
==,
(也可代入后再求導(dǎo))
在上單調(diào)遞減,,
故對于時,總有.由此得
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左頂點為,左、右焦點分別為,離心率為,是橢圓上的一個動點(不與左、右頂點重合),且的周長為6,點關(guān)于原點的對稱點為,直線交于點.
(1)求橢圓方程;
(2)若直線與橢圓交于另一點,且,求點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知條件P:①是奇函數(shù);②值域為R;③函數(shù)圖象經(jīng)過第四象限。則下列函數(shù)中滿足條件Р的是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù)
⑴當(dāng)時,求函數(shù)的表達式;
⑵若,函數(shù)在上的最小值是2 ,求的值;
⑶在⑵的條件下,求直線與函數(shù)的圖象所圍成圖形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的左、右焦點分別是,,,是其左右頂點,點是橢圓上任一點,且的周長為6,若面積的最大值為.
(1)求橢圓的方程;
(2)若過點且斜率不為0的直線交橢圓于,兩個不同點,證明:直線與的交點在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若對任意,都有成立,求實數(shù)的取值范圍;
(2)若存在,使成立,求實數(shù)的取值范圍;
(3)若對任意,都有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)拋擲兩枚骰子,記事件為“朝上的2個數(shù)之和為偶數(shù)”,事件為“朝上的2個數(shù)均為偶數(shù)”,則( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為認(rèn)真貫徹落實黨中央國務(wù)院決策部署,堅持“房子是用來住的,不是用來炒的”定位,堅持調(diào)控政策的連續(xù)性和穩(wěn)定性,進一步穩(wěn)定某省市商品住房市場,該市人民政府辦公廳出臺了相關(guān)文件來控制房價,并取得了一定效果,下表是2019年2月至6月以來該市某城區(qū)的房價均值數(shù)據(jù):
(月份) | 2 | 3 | 4 | 5 | 6 |
(房價均價:千元/平方米) | 9.80 | 9.70 | 9.30 | 9.20 |
已知:.
(1)若變量、具有線性相關(guān)關(guān)系,求房價均價(千元/平方米)關(guān)于月份的線性回歸方程;
(2)根據(jù)線性回歸方程預(yù)測該市某城區(qū)7月份的房價.
(參考公式:用最小二乘法求線性回歸方程的系數(shù)公式)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐PABCD的底面ABCD是矩形,PA⊥底面ABCD,點E、F分別是棱PC、PD的中點,則
①棱AB與PD所在直線垂直;
②平面PBC與平面ABCD垂直;
③△PCD的面積大于△PAB的面積;
④直線AE與直線BF是異面直線.
以上結(jié)論正確的是________.(寫出所有正確結(jié)論的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com