設雙曲線C的兩個焦點為(-3,0),(3,0),一個頂點是(2,0),則C的方程為
 
考點:雙曲線的標準方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:設雙曲線方程為
x2
a2 
-
y2
b2
=1(a>0,b>0),則a=2,c=3,由此能求出C的方程.
解答: 解:∵雙曲線C的兩個焦點為(-3,0),(3,0),一個頂點是(2,0),
∴設雙曲線方程為
x2
a2 
-
y2
b2
=1(a>0,b>0),且a=2,c=3,
∴b2=9-4=5,
∴C的方程
x2
4
-
y2
5
=1

故答案為:
x2
4
-
y2
5
=1
點評:本題考查雙曲線的方程的求法,是基礎題,解題時要認真審題,注意雙曲線性質(zhì)的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

點(1,2)在不等式x+y-a>0表示的平面區(qū)域內(nèi),則a的取值范圍是( 。
A、(-∞,3)
B、(-∞,-3)
C、(3,+∞)
D、(-3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin2x-2sin2x
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)的最大值及f(x)取最大值時x的集合并求函數(shù)f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(2x+φ),其中φ為實數(shù),若f(x)≤|f(
π
6
)
|對x∈R恒成立且f(
π
2
)<f(π)
,則下列結論正確的是( 。
A、f(
11π
12
)=-1
B、f(
10
)>f(
π
5
)
C、f(x)是奇函數(shù)
D、[0,
π
6
]
是f(x)的單調(diào)遞增區(qū)間

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知單位向量
a
,
b
的夾角為
π
3
.設單位向量
c
=λ 
a
+μ 
b
 (λ>0,μ∈R),若
c
a
,則有序數(shù)對(λ,μ)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等比數(shù)列{an}中,S4=5S2,則
a1-a5
a3+a5
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)a,b,c滿足2a+b=4,且ab+c=5,則abc的最大值是
 
.(代入換元)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U=R,非空集合A={x|
x-2
x-3
<0},B={x|(x-a)(x-a-4)<0}.
(1)當a=-
3
2
時,求A∩B;
(2)命題p:x∈A,命題q:x∈B,若¬p是¬q的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x+ln (
x2+1
+x),g(x)=
x
1+x2
 ,   x>0 
-x
1+x2
 ,  x≤0 .
,則( 。
A、f(x)是奇函數(shù),g(x)是奇函數(shù)
B、f(x)是偶函數(shù),g(x)是偶函數(shù)
C、f(x)是奇函數(shù),g(x)是偶函數(shù)
D、f(x)是偶函數(shù),g(x)是奇函數(shù)

查看答案和解析>>

同步練習冊答案