【題目】已知函數(shù).
(1)當時,求的圖象在處的切線方程;
(2)若函數(shù)在上有兩個零點,求實數(shù)m的取值范圍;
(3)若對區(qū)間內(nèi)任意兩個不等的實數(shù),,不等式恒成立,求實數(shù)a的取值范圍.
【答案】(1);(2);(3)
【解析】
(1)求出函數(shù)的導數(shù),利用導數(shù)的幾何意義即可求出函數(shù)在處的切線方程
(2)先通過求導,研究函數(shù)的單調(diào)性,然后利用函數(shù)在上有兩個零點可得直線與的圖像有兩個交點,從而得到,求解即可
(3)不妨設,恒成立等價于,化簡為,然后,令,然后判斷的單調(diào)性即可求解
(1)當時,,,切點坐標為,
切線的斜率,則切線方程為,即.
(2),則,
,故時,.
當時,;
當時,.
故在處取得極大值.
又,,,則,
在上的最小值是.
在上有兩個零點的條件是
解得
實數(shù)m的取值范圍是
(3)不妨設,恒成立等價于,即.
令,由,具有任意性知,在區(qū)間內(nèi)單調(diào)遞減,
恒成立,即恒成立,
,在上恒成立.
令,則
在上單調(diào)遞增,則,
實數(shù)a的取值范圍是
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線的參數(shù)方程:(為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程;
(2)過曲線上一點作直線與曲線交于兩點,中點為,,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+4[sin(θ+)]x﹣2,θ∈[0,2π].
(Ⅰ)若函數(shù)f(x)為偶函數(shù),求tanθ的值;
(Ⅱ)若f(x)在[﹣,1]上是單調(diào)函數(shù),求θ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形為平行四邊形,,平面,,,,且是的中點.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的大小;
(Ⅲ)在線段上是否存在一點,使得與所成的角為? 若存在,求出的長度;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線過點,拋物線在處的切線交軸于點,過點作直線與拋物線交于不同的兩點、,直線、、分別與拋物線的準線交于點、、,其中為坐標原點.
(Ⅰ)求拋物線的方程及其準線方程,并求出點的坐標;
(Ⅱ)求證:為線段的中點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓與過其右焦點F(1,0)的直線交于不同的兩點A,B,線段AB的中點為D,且直線l與直線OD的斜率之積為.
(1)求C的方程;
(2)設橢圓的左頂點為M,kMA,kMB分別表示直線MA,MB的斜率,求證.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年9月25日.阿里巴巴在杭州云棲大會上正式對外發(fā)布了含光800AI芯片,在業(yè)界標準的ResNet -50測試中,含光800推理性能達到78563lPS,比目前業(yè)界最好的AI芯片性能高4倍;能效比500 IPS/W,是第二名的3.3倍.在國內(nèi)集成電路產(chǎn)業(yè)發(fā)展中,集成電路設計產(chǎn)業(yè)始終是國內(nèi)集成電路產(chǎn)業(yè)中最具發(fā)展活力的領域,增長也最為迅速.如圖是2014-2018年中國集成電路設計產(chǎn)業(yè)的銷售額(億元)及其增速(%)的統(tǒng)計圖,則下面結(jié)論中正確的是( )
A.2014-2018年,中國集成電路設計產(chǎn)業(yè)的銷售額逐年增加
B.2014-2017年,中國集成電路設計產(chǎn)業(yè)的銷售額增速逐年下降
C.2018年中國集成電路設計產(chǎn)業(yè)的銷售額的增長率比2015年的高
D.2018年與2014年相比,中國集成電路設計產(chǎn)業(yè)銷售額的增長率約為110%
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,將曲線方程,先向左平移2個單位,再向上平移2個單位,得到曲線C.
(1)點M(x,y)為曲線C上任意一點,寫出曲線C的參數(shù)方程,并求出的最大值;
(2)設直線l的參數(shù)方程為,(t為參數(shù)),又直線l與曲線C的交點為E,F,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求過線段EF的中點且與l垂直的直線的極坐標方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com