【題目】如圖,四棱錐PABCD中,底面ABCD是矩形,PA⊥平面ABCD,AD=1,PA=AB= ,點E是棱PB的中點.
(1)求異面直線EC與PD所成角的余弦值;
(2)求二面角B-EC-D的余弦值.
【答案】(1).(2.
【解析】
(1)先根據(jù)題意建立空間直角坐標系,分別求得向量和向量的坐標,再利用線線角的向量方法求解.
(2)分別求得平面BEC的一個法向量和平面DEC的一個法向量,再利用面面角向量方法求解,注意根據(jù)圖形判斷二面角與向量夾角的大小關系確定符號.
(1)因為PA⊥底面ABCD,且底面ABCD為矩形,
所以AB,AD,AP兩兩垂直,
以A為原點,AB,AD,AP分別為x,y,z軸建立空間直角坐標系.
又因為PA=AB= ,AD=1,
所以A(0,0,0),B ,C,D(0,1,0),P
因為E是棱PB的中點,所以E,
所以=,=(0,1,- ),
所以cos〈,〉==,
所以異面直線EC與PD所成角的余弦值為.
(2)由(1)得=,=(0,1,0),=(,0,0).
設平面BEC的法向量為=(x1,y1,z1),
所以
令x1=1,則z1=1,所以平面BEC的一個法向量為=(1,0,1).
設平面DEC的法向量為=(x2,y2,z2),
所以
令z2=,則y2=1,所以平面DEC的一個法向量為=(0,1,),
所以cos〈,〉==
.由圖可知二面角B-EC-D為鈍角,所以二面角B-EC-D的余弦值為-.
科目:高中數(shù)學 來源: 題型:
【題目】下圖是函數(shù)(,,,)在區(qū)間上的圖象,為了得到這個函數(shù)的圖象,只需將()的圖像上所有的點( )
A. 向左平移個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變
B. 向左平移個單位長度,再把所得各點的橫坐標縮短到原來的倍,縱坐標不變
C. 向左平移個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變
D. 向左平移個單位長度,再把所得各點的橫坐標縮短到原來的倍,縱坐標不變
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】江心洲有一塊如圖所示的江邊,,為岸邊,岸邊形成角,現(xiàn)擬在此江邊用圍網(wǎng)建一個江水養(yǎng)殖場,有兩個方案:方案l:在岸邊上取兩點,用長度為的圍網(wǎng)依托岸邊線圍成三角形(,兩邊為圍網(wǎng));方案2:在岸邊,上分別取點,用長度為的圍網(wǎng)依托岸邊圍成三角形.請分別計算,面積的最大值,并比較哪個方案好.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為了解用戶對其產品的滿意度,從A,B兩地區(qū)分別隨機調查了40個用戶,根據(jù)用戶對產品的滿意度評分,得到地區(qū)用戶滿意度評分的頻率分布直方圖和地區(qū)用戶滿意度評分的頻數(shù)分布表.
地區(qū)用戶滿意度評分的頻率分布直方圖
地區(qū)用戶滿意度評分的頻數(shù)分布表
滿意度評分分組 | |||||
頻數(shù) | 2 | 8 | 14 | 10 | 6 |
(1)在圖中作出地區(qū)用戶滿意度評分的頻率分布直方圖,并通過直方圖比較兩地區(qū)滿意度評分的平均值及分散程度(不要求計算出具體值,給出結論即可).
地區(qū)用戶滿意度評分的頻率分布直方圖
(2)根據(jù)用戶滿意度評分,將用戶的滿意度分為三個等級:
滿意度評分 | 低于70分 | 70分到89分 | td style="width:88.95pt; border-left-style:solid; border-left-width:0.75pt; border-bottom-style:solid; border-bottom-width:0.75pt; padding:3.38pt 5.03pt; vertical-align:middle">|
滿意度等級 | 不滿意 | 滿意 | 非常滿意 |
公司負責人為了解用戶滿意度情況,從地區(qū)中調查8戶,其中有2戶滿意度等級是不滿意,求從這8戶中隨機抽取2戶檢查,抽到不滿意用戶的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方體的棱長為1,為的中點,在側面上,有下列四個命題:
①若,則面積的最小值為;
②平面內存在與平行的直線;
③過作平面,使得棱,,在平面的正投影的長度相等,則這樣的平面有4個;
④過作面與面平行,則正方體在面的正投影面積為.
則上述四個命題中,真命題的個數(shù)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分13分)
為回饋顧客,某商場擬通過摸球兌獎的方式對1000位顧客進行獎勵,規(guī)定:每位顧客從一個裝有4個標有面值的球的袋中一次性隨機摸出2個球,球上所標的面值之和為該顧客所獲的獎勵額.
(1)若袋中所裝的4個球中有1個所標的面值為50元,其余3個均為10元,求
①顧客所獲的獎勵額為60元的概率
②顧客所獲的獎勵額的分布列及數(shù)學期望;
(2)商場對獎勵總額的預算是60000元,并規(guī)定袋中的4個球只能由標有面值10元和50元的兩種球組成,或標有面值20元和40元的兩種球組成.為了使顧客得到的獎勵總額盡可能符合商場的預算且每位顧客所獲的獎勵額相對均衡,請對袋中的4個球的面值給出一個合適的設計,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在著名的漢諾塔問題中,有三根高度相同的柱子和一些大小及顏色各不相同的圓盤,三根柱子分別為起始柱、輔助柱及目標柱.已知起始柱上套有個圓盤,較大的圓盤都在較小的圓盤下面.現(xiàn)把圓盤從起始柱全部移到目標柱上,規(guī)則如下:每次只能移動一個圓盤,且每次移動后,每根柱上較大的圓盤不能放在較小的圓盤上面,規(guī)定一個圓盤從任一根柱上移動到另一根柱上為一次移動.若將個圓盤從起始柱移動到目標柱上最少需要移動的次數(shù)記為,則( )
A. 33B. 31C. 17D. 15
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,直線將矩形分為兩個直角梯形和,將梯形沿邊翻折,如圖2,在翻折過程中(平面和平面不重合),下列說法正確的是( )
A.存在某一位置,使得平面
B.存在某一位置,使得平面
C.存在某一位置,使得
D.在翻折過程中,恒有直線平面
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com