對(duì)于函數(shù),若在定義域存在實(shí)數(shù),滿(mǎn)足,則稱(chēng)為“局部奇函數(shù)”.
(1)已知二次函數(shù),試判斷是否為“局部奇函數(shù)”?并說(shuō)明理由;
(2)設(shè)是定義在上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍.

(1)是“局部奇函數(shù)”;(2).

解析試題分析:(1)本題實(shí)質(zhì)就是解方程,如果這個(gè)方程有實(shí)數(shù)解,就說(shuō)明是“局部奇函數(shù)”,如果這個(gè)方程無(wú)實(shí)數(shù)解,就說(shuō)明不是“局部奇函數(shù)”,易知有實(shí)數(shù)解,因此答案是肯定的;(2)已經(jīng)明確是“局部奇函數(shù)”,也就是說(shuō)方程一定有實(shí)數(shù)解,問(wèn)題也就變成方程上有解,求參數(shù)的取值范圍,又方程可變形為,因此求的取值范圍,就相當(dāng)于求函數(shù)的值域,用換元法(設(shè)),再借助于函數(shù)的單調(diào)性就可求出.
試題解析:(1)為“局部奇函數(shù)”等價(jià)于關(guān)于的方程有解.
(3分)
有解為“局部奇函數(shù)”.(5分)
(2)當(dāng)時(shí), 可轉(zhuǎn)化為(8分)
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f3/f/1cmca3.png" style="vertical-align:middle;" />的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c9/5/ipztm2.png" style="vertical-align:middle;" />,所以方程上有解,令,(9分)

因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/54/2/1egtg4.png" style="vertical-align:middle;" />在上遞減,在上遞增,(11分)
(12分)
(14分)
考點(diǎn):新定義概念,方程有解求參數(shù)取值范圍問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)(2011•湖北)提高過(guò)江大橋的車(chē)輛通行能力可改善整個(gè)城市的交通狀況,在一般情況下,大橋上的車(chē)流速度v(單位:千米/小時(shí))是車(chē)流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車(chē)流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車(chē)流速度為0;當(dāng)車(chē)流密度不超過(guò)20輛/千米時(shí),車(chē)流速度為60千米/小時(shí),研究表明:當(dāng)20≤x≤200時(shí),車(chē)流速度v是車(chē)流密度x的一次函數(shù).
(Ⅰ)當(dāng)0≤x≤200時(shí),求函數(shù)v(x)的表達(dá)式;
(Ⅱ)當(dāng)車(chē)流密度x為多大時(shí),車(chē)流量(單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車(chē)輛數(shù),單位:輛/小時(shí))f(x)=x•v(x)可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和,數(shù)列滿(mǎn)足
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某公司以每噸10萬(wàn)元的價(jià)格銷(xiāo)售某種產(chǎn)品,每年可售出該產(chǎn)品1000噸,若將該產(chǎn)品每噸的價(jià)格上漲x%,則每年的銷(xiāo)售數(shù)量將減少,該產(chǎn)品每噸的價(jià)格上漲百分之幾,可使銷(xiāo)售的總金額最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

養(yǎng)路處建造圓錐形倉(cāng)庫(kù)用于貯藏食鹽(供融化高速公路上的積雪之用),已建的倉(cāng)庫(kù)的底面直徑為,高,養(yǎng)路處擬建一個(gè)更大的圓錐形倉(cāng)庫(kù),以存放更多食鹽,現(xiàn)有兩種方案:一是新建的倉(cāng)庫(kù)的底面直徑比原來(lái)大(高不變);二是高度增加(底面直徑不變)。
(1)分別計(jì)算按這兩種方案所建的倉(cāng)庫(kù)的體積;
(2)分別計(jì)算按這兩種方案所建的倉(cāng)庫(kù)的表面積(地面無(wú)需用材料);
(3)哪個(gè)方案更經(jīng)濟(jì)些?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某校要建一個(gè)面積為450平方米的矩形球場(chǎng),要求球場(chǎng)的一面利用舊墻,其他各面用鋼筋網(wǎng)圍成,且在矩形一邊的鋼筋網(wǎng)的正中間要留一個(gè)3米的進(jìn)出口(如圖).設(shè)矩形的長(zhǎng)為米,鋼筋網(wǎng)的總長(zhǎng)度為米.

(1)列出的函數(shù)關(guān)系式,并寫(xiě)出其定義域;
(2)問(wèn)矩形的長(zhǎng)與寬各為多少米時(shí),所用的鋼筋網(wǎng)的總長(zhǎng)度最小?
(3)若由于地形限制,該球場(chǎng)的長(zhǎng)和寬都不能超過(guò)25米,問(wèn)矩形的長(zhǎng)與寬各為多少米時(shí),所用的鋼筋網(wǎng)的總長(zhǎng)度最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

對(duì)于函數(shù),若在定義域內(nèi)存在實(shí)數(shù),滿(mǎn)足,則稱(chēng)為“局部奇函數(shù)”.
(1)已知函數(shù),試判斷是否為“局部奇函數(shù)”?并說(shuō)明理由;
(2)若為定義域上的“局部奇函數(shù)”,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

市場(chǎng)營(yíng)銷(xiāo)人員對(duì)過(guò)去幾年某商品的價(jià)格及銷(xiāo)售數(shù)量的關(guān)系作數(shù)據(jù)分析發(fā)現(xiàn)有如下規(guī)律:該商品的價(jià)格每上漲x%(x>0),銷(xiāo)售數(shù)量就減少kx%(其中k為正常數(shù)).目前該商品定價(jià)為每個(gè)a元,統(tǒng)計(jì)其銷(xiāo)售數(shù)量為b個(gè).
(1)當(dāng)k=時(shí),該商品的價(jià)格上漲多少,才能使銷(xiāo)售的總金額達(dá)到最大?
(2)在適當(dāng)?shù)臐q價(jià)過(guò)程中,求使銷(xiāo)售總金額不斷增加時(shí)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

首屆世界低碳經(jīng)濟(jì)大會(huì)在南昌召開(kāi),本屆大會(huì)以“節(jié)能減排,綠色生態(tài)”為主題.某單位在國(guó)家科研部門(mén)的支持下,進(jìn)行技術(shù)攻關(guān),采用了新工藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品.已知該單位每月的處理量最少為400噸,最多為600噸,月處理成本y(元)與月處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為y=x2-200x+80 000,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價(jià)值為100元.
(1)該單位每月處理量為多少?lài)崟r(shí),才能使每噸的平均處理成本最低?
(2)該單位每月能否獲利?如果獲利,求出最大利潤(rùn);如果不獲利,則國(guó)家至少需要補(bǔ)貼多少元才能使該單位不虧損?

查看答案和解析>>

同步練習(xí)冊(cè)答案