函數(shù)是定義在上的奇函數(shù),且.

(1)求實數(shù)的值,并確定函數(shù)的解析式;

(2)用定義證明的單調(diào)性,并判斷的單調(diào)性情況;

(3)根據(jù)第(2)推斷總結函數(shù)上單調(diào)性情況,并由此你能否得到函數(shù)上的單調(diào)性(寫出單調(diào)區(qū)間及單調(diào)性)

解:(1)是定義在上的奇函數(shù),且

  解得

…………4分

(2)設

…………6分

時, ,

上單調(diào)遞減。                 …………8分

時, ,

上單調(diào)遞增。                       …………10分

判斷上單調(diào)遞減,在上單調(diào)遞增。                                        …………11分

(3) ()在上單調(diào)遞減,在上單調(diào)遞增。                                       …13分

根據(jù)奇偶性 在上單調(diào)遞增,在上單調(diào)遞減。                                           ……14分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2014屆云南省高一上學期期中數(shù)學試卷(解析版) 題型:解答題

(本小題滿分12分)已知函數(shù)是定義在上的奇函數(shù),且,

(1)確定函數(shù)的解析式;

(2)用定義證明上是增函數(shù);

(3)解不等式.

【解析】第一問利用函數(shù)的奇函數(shù)性質(zhì)可知f(0)=0

結合條件,解得函數(shù)解析式

第二問中,利用函數(shù)單調(diào)性的定義,作差變形,定號,證明。

第三問中,結合第二問中的單調(diào)性,可知要是原式有意義的利用變量大,則函數(shù)值大的關系得到結論。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年浙江省高三三月月考數(shù)學(理)試卷 題型:選擇題

已知函數(shù)是定義在R上的奇函數(shù),且,在[0,2]上是增函

數(shù),則下列結論:

(1)若,則;[來源:Z§xx§k.Com]

(2)若;

(3)若方程在[-8,8]內(nèi)恰有四個不同的根,則;

其中正確的有(     )

A.0個              B.1個             C.2個               D.3個

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知是定義在上的不恒為零的函數(shù),且對于任意實數(shù)都有, 則

(A)是奇函數(shù),但不是偶函數(shù)         (B)是偶函數(shù),但不是奇函數(shù)

(C)既是奇函數(shù),又是偶函數(shù)         (D)既非奇函數(shù),又非偶函

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)是定義在R上的奇函數(shù),且,在[0,2]上增函

數(shù),則下列結論:

(1)若,則;

(2)若

(3)若方程在[-8,8]內(nèi)恰有四個不同的根,則;

其中正確的有(     )

A.0個              B.1個             C.2個              D.3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)是定義在R上的奇函數(shù),且,在[0,2]上是增函

數(shù),則下列結論:①若,則;②若

③若方程在[-8,8]內(nèi)恰有四個不同的角,則,其中正確的有     (   )

A.0個  B.1個  C.2個  D.3個

查看答案和解析>>

同步練習冊答案