【題目】已知函數(shù)f(x)=sin(2x+φ)+2sin2x(|φ|< )的圖象過(guò)點(diǎn)( , ).
(1)求函數(shù)f(x)在[0, ]的最小值;
(2)設(shè)角C為銳角,△ABC的內(nèi)角A、B、C的對(duì)邊長(zhǎng)分別為a、b、c,若x=C是曲線(xiàn)y=f(x)的一條對(duì)稱(chēng)軸,且△ABC的面積為2 ,a+b=6,求邊c的長(zhǎng).
【答案】
(1)解:函數(shù)f(x)=sin(2x+φ)+2sin2x,
∵圖象過(guò)點(diǎn)( , ).
∴ =sin(2× +φ)+2sin2 ,
得:sin( +φ)=1,
∴ +φ= ,k∈Z,
∵|φ|< ,
∴φ= .
∴函數(shù)f(x)=sin(2x+ )+2sin2x= sin2x+ cos2x+1﹣cos2x=sin(2x﹣ )+1.
∵x∈[0, ],
∴2x﹣ ∈[ , ].
∴當(dāng)2x﹣ = 時(shí),f(x)取得最小值為
(2)解:由(1)可得f(x)=sin(2x﹣ )+1.
其對(duì)稱(chēng)軸方程為:2x﹣ = ,k∈Z,
∵x=C是曲線(xiàn)y=f(x)的一條對(duì)稱(chēng)軸,即2C﹣ = ,C為銳角,k∈Z,
∴C= .
又∵△ABC的面積為2 = absinC,
可得ab=8,a+b=6.
由余弦定理:c2=a2+b2﹣2abcosC,得:c2=(a+b)2﹣2ab﹣2abcosC=12
∴c=2
【解析】(1)圖象過(guò)點(diǎn)( , ).求出φ,利用二倍角、和與差和輔助角公式化簡(jiǎn)f(x),將內(nèi)層函數(shù)作為整體,求出范圍,即可得f(x)在[0, ]的最小值;(2)求出f(x)的對(duì)稱(chēng)軸,可得出C(注意C為銳角),根據(jù)△ABC的面積為2 ,a+b=6,利用余弦定理求出
邊c的長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:(x﹣1)2+(y﹣3)2=2被y軸截得的線(xiàn)段AB與被直線(xiàn)y=3x+b所截得的線(xiàn)段CD的長(zhǎng)度相等,則b等于( )
A.±
B.±
C.±2
D.±
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,已知圓圓心為,過(guò)點(diǎn)且斜率為的直線(xiàn)與圓相交于不同的兩點(diǎn)、.
()求的取值范圍;
()是否存在常數(shù),使得向量與共線(xiàn)?如果存在,求值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知x=﹣3,x=1是函數(shù)f(x)=sin(ωx+φ)(ω>0)的兩個(gè)相鄰的極值點(diǎn),且f(x)在x=﹣1處的導(dǎo)數(shù)f'(﹣1)>0,則f(0)=( )
A.0
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在公差不為0的等差數(shù)列{an}中,a22=a3+a6 , 且a3為a1與a11的等比中項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=(﹣1)n ,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知右焦點(diǎn)為F的橢圓C: + =1(a>b>0)過(guò)點(diǎn)M(1, ),直線(xiàn)x=a與拋物線(xiàn)L:x2= y交于點(diǎn)N,且 = ,其中O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)直線(xiàn)l與橢圓C交于A、B兩點(diǎn).
①若直線(xiàn)l與x軸垂直,過(guò)點(diǎn)P(4,0)的直線(xiàn)PB交橢圓C于另一點(diǎn)E,證明直線(xiàn)AE與x軸相交于定點(diǎn);
②已知D為橢圓C的左頂點(diǎn),若l與直線(xiàn)DM平行,判斷直線(xiàn)MA,MB是否關(guān)于直線(xiàn)FM對(duì)稱(chēng),并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 且S4=4S2 , a2n=2an+1.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式
(Ⅱ)設(shè)數(shù)列{bn}的前n項(xiàng)和為T(mén)n , 且 (λ為常數(shù)).令cn=b2n , (n∈N*),求數(shù)列{cn}的前n項(xiàng)和Rn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若x1 , x2 , …,x2017的平均數(shù)為4,標(biāo)準(zhǔn)差為3,且yi=﹣3(xi﹣2),i=x1 , x2 , …,x2017 , 則新數(shù)據(jù)y1 , y2 , …,y2017的平均數(shù)和標(biāo)準(zhǔn)差分別為( )
A.﹣6 9
B.﹣6 27
C.﹣12 9
D.﹣12 27
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,橢圓 的離心率為 ,直線(xiàn)y=x被橢圓C截得的線(xiàn)段長(zhǎng)為 .
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)原點(diǎn)的直線(xiàn)與橢圓C交于兩點(diǎn)(A,B不是橢圓C的頂點(diǎn)),點(diǎn)D在橢圓C上,且AD⊥AB,直線(xiàn)BD與x軸、y軸分別交于M,N兩點(diǎn).設(shè)直線(xiàn)BD,AM斜率分別為k1 , k2 , 證明存在常數(shù)λ使得k1=λk2 , 并求出λ的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com