【題目】如圖(示意),公路AM、AN圍成的是一塊頂角為鈍角α的角形耕地,其中.在該塊土地中處有一小型建筑,經測量,它到公路的距離、分別為.現(xiàn)要過點修建一條直線公路,將三條公路圍成的區(qū)域建成一個工業(yè)園.設,,其中

(1)試建立間的等量關系;

(2)為盡量減少耕地占用,問如何確定B點的位置,使得該工業(yè)園區(qū)的面積最。坎⑶笞钚∶娣e.

【答案】(1)3x+2y=xy;(2)當AB=10km時,最小面積為30km2

【解析】

(1)過點PPEAM,PFAN,垂足為E、F,連接PA.設ABx,ACy.由SABCSABP+SAPC,求得面積的表達式,從而求得x,y的關系.

(2)運用基本不等式可得最小值.

(1)過點P作PE⊥AM,PF⊥AN,垂足為E、F.因為P到AM,AN的距離分別為3,2,

即PE=3,PF=2.由S△ABC=S△ABP+S△APCx3y2(3x+2y)①

所以S△ABCxy② ,即3x+2y=xy.

(2)因為3x+2y≥2,所以xy≥2.解得xy≥150.

當且僅當3x=2y取“=”,即x=10,y=15.

所以S△ABCxy有最小值30.

所以:當AB=10km時,該工業(yè)園區(qū)的面積最小,最小面積為30km2

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) (是常數(shù)),

(1)求函數(shù)的單調區(qū)間;

(2)當時,函數(shù)有零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學共有1000名學生參加了該地區(qū)高三第一次質量檢測的數(shù)學考試,數(shù)學成績如下表所示:

數(shù)學成績分組

[0,30)

[30,60)

[60,90)

[90,120)

[120,150]

人數(shù)

60

90

300

x

160

Ⅰ)為了了解同學們前段復習的得失,以便制定下階段的復習計劃,學校將采用分層抽樣的方法抽取100名同學進行問卷調查,甲同學在本次測試中數(shù)學成績?yōu)?/span>95分,求他被抽中的概率;

Ⅱ)作出頻率分布直方圖,并估計該學校本次考試的數(shù)學平均分.(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,面積為的平面凸四邊形的第條邊的邊長記為,此四邊形內任一點到第條邊的距離記為,若,則.類比以上性質,體積為的三棱錐的第個面的面積記為,此三棱錐內任一點到第個面的距離記為,若,則等于( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C:(a>b>0)的離心率為,且過點(1,).

(1)求橢圓C的方程;

(2)設與圓O:x2+y2=相切的直線l交橢圓CA,B兩點,求OAB面積的最大值,及取得最大值時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知不等式ax2-5x+b>0的解是-3<x<2,設A={x|bx2-5x+a>0},B={x|}.

(1)求a,b的值;

(2)求ABA∪(UB).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國家射擊隊的某隊員射擊一次,命中7~10環(huán)的概率如表所示:

命中環(huán)數(shù)

10環(huán)

9環(huán)

8環(huán)

7環(huán)

概率

0.32

0.28

0.18

0.12

求該射擊隊員射擊一次 求:

(1)射中9環(huán)或10環(huán)的概率;

(2)至少命中8環(huán)的概率;(3)命中不足8環(huán)的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,多面體ABCDEF中,四邊形ABCD為矩形,二面角A-CD-F60°,DE∥CF,CD⊥DE,AD=2,DE=DC=3,CF=6.

(1)求證:BF∥平面ADE;

(2)在線段CF上求一點G,使銳二面角B-EG-D的余弦值為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知斜三棱柱的側面與底面垂直,,,且,,求:

1)側棱與底面所成角的大小;

2)求點到平面的距離.

查看答案和解析>>

同步練習冊答案