已知點(diǎn)在函數(shù)圖象上,過點(diǎn)的切線的方向向量為>0).
(Ⅰ)求數(shù)列的通項(xiàng)公式,并將化簡(jiǎn);
(Ⅱ)設(shè)數(shù)列的前n項(xiàng)和為Sn,若≤Sn對(duì)任意正整數(shù)n均成立,求實(shí)數(shù)的范圍.
(Ⅰ) ;
(Ⅱ) .

試題分析:(Ⅰ)                2分
  ∵>0 ∴        4分
        7分
(Ⅱ)由(Ⅰ)知              8分

             10分
易知是遞增的  ∴當(dāng)時(shí),的最小值為  ∴      12分
點(diǎn)評(píng):中檔題,本題綜合性較強(qiáng),將函數(shù)、導(dǎo)數(shù)、數(shù)列及數(shù)列的求和結(jié)合在一起進(jìn)行考查!胺纸M求和法”“裂項(xiàng)相消法”“錯(cuò)位相減法”等,是常?疾榈臄(shù)列求和方法。涉及數(shù)列不等式的證明問題,往往先求和、后放縮、再證明。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè){}為等差數(shù)列,公差d = -2,為其前n項(xiàng)和.若,則=
A.18B.20C.22D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列的前項(xiàng)積為,且 .
(Ⅰ)求證數(shù)列是等差數(shù)列;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若兩個(gè)等差數(shù)列、的前項(xiàng)和分別為 、,且滿足,則的值為  ________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

對(duì)數(shù)列,規(guī)定為數(shù)列的一階差分?jǐn)?shù)列,其中, 對(duì)自然數(shù),規(guī)定階差分?jǐn)?shù)列,其中
(1)已知數(shù)列的通項(xiàng)公式,試判斷,是否為等差或等比數(shù)列,為什么?
(2)若數(shù)列首項(xiàng),且滿足,求數(shù)列的通項(xiàng)公式。
(3)對(duì)(2)中數(shù)列,是否存在等差數(shù)列,使得對(duì)一切自然都成立?若存在,求數(shù)列的通項(xiàng)公式;若不存在,則請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列的第二項(xiàng)為8,前10項(xiàng)和為185。
(1)求數(shù)列的通項(xiàng)公式;
(2)若從數(shù)列中,依次取出第2項(xiàng),第4項(xiàng),第8項(xiàng),……,第項(xiàng),……按原來順序組成一個(gè)新數(shù)列,試求數(shù)列的通項(xiàng)公式和前n項(xiàng)的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

是等差數(shù)列,公差,的前項(xiàng)和,已知.
(1)求數(shù)列的通項(xiàng)公式;
(2)令=,求數(shù)列的前項(xiàng)之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在等差數(shù)列中中,       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列中,,滿足。
(1)求證:數(shù)列為等差數(shù)列;
(2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案