【題目】已知命題p:關(guān)于x的方程xa在(1,+∞)上有實(shí)根;命題q:方程1表示的曲線(xiàn)是焦點(diǎn)在x軸上的橢圓.

1)若p是真命題,求a的取值范圍;

2)若pq是真命題,求a的取值范圍.

【答案】(1)a[3,+∞);(2a[3,4

【解析】

(1)根據(jù)基本不等式求最值可得的范圍;

(2)求出q為真命題時(shí)的范圍后,與(1)的結(jié)果相交可得結(jié)果.

1)若p是真命題,則關(guān)于x的方程xa在(1,+∞)上有實(shí)根,

可得,所以,當(dāng)且僅當(dāng),即時(shí)取得等號(hào),所以.

2pq是真命題,則pq均為真命題,

q為真命題,即方程1表示的曲線(xiàn)是焦點(diǎn)在x軸上的橢圓,則0a4

由(1)知,p為真命題時(shí)a[3+∞),所以pq是真命題,則a[3,4).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐的底面為直角梯形,,,底面,且,,的中點(diǎn).

(1)證明:面;

(2)求夾角的余弦值;

(3)求面與面所成二面角余弦值的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn),直線(xiàn) 與拋物線(xiàn)交于兩點(diǎn).

(1)若以為直徑的圓與軸相切,求該圓的方程;

(2)若直線(xiàn)軸負(fù)半軸相交,求(為坐標(biāo)原點(diǎn))面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線(xiàn):的左、右焦點(diǎn)分別為、,為坐標(biāo)原點(diǎn),是雙曲線(xiàn)在第一象限上的點(diǎn),直線(xiàn)交雙曲線(xiàn)左支于點(diǎn),直線(xiàn) 交雙曲線(xiàn)右支于點(diǎn),若,且,則雙曲線(xiàn)的漸近線(xiàn)方程為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列關(guān)于命題的說(shuō)法錯(cuò)誤的是(

A.命題x23x+20,則x2”的逆否命題為x≠2,則x23x+2≠0”

B.a2”函數(shù)fx)=ax在區(qū)間(﹣,+∞)上為增函數(shù)的充分不必要條件

C.命題xR,使得x2+x+10”的否定是:xR,均有x2+x+1≥0”

D.f )=0,則yfx)的極值點(diǎn)為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線(xiàn),過(guò)點(diǎn)的直線(xiàn)的參數(shù)方程為:為參數(shù)),直線(xiàn)與曲線(xiàn)分別交于、兩點(diǎn).

(1)寫(xiě)出曲線(xiàn)的直角坐標(biāo)方程和直線(xiàn)的普通方程;

(2)求線(xiàn)段的長(zhǎng)和的積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)F是拋物線(xiàn)Cy22pxp0)的焦點(diǎn),若點(diǎn)Px04)在拋物線(xiàn)C上,且.

1)求拋物線(xiàn)C的方程;

2)動(dòng)直線(xiàn)lxmy+1mR)與拋物線(xiàn)C相交于A,B兩點(diǎn),問(wèn):在x軸上是否存在定點(diǎn)Dt0)(其中t≠0),使得kAD+kBD0,(kAD,kBD分別為直線(xiàn)AD,BD的斜率)若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線(xiàn)的傾斜角為,且經(jīng)過(guò)點(diǎn).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線(xiàn),從原點(diǎn)O作射線(xiàn)交于點(diǎn)M,點(diǎn)N為射線(xiàn)OM上的點(diǎn),滿(mǎn)足,記點(diǎn)N的軌跡為曲線(xiàn)C.

(Ⅰ)求出直線(xiàn)的參數(shù)方程和曲線(xiàn)C的直角坐標(biāo)方程;

(Ⅱ)設(shè)直線(xiàn)與曲線(xiàn)C交于P,Q兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為8的菱形中,,將沿折起,使點(diǎn)到達(dá)的位置,且二面角.

(1)求異面直線(xiàn)所成角的大;

(2)若點(diǎn)中點(diǎn),求直線(xiàn)與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案