練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知定圓
圓心為
A,動圓
M過點
B(1,0)且和圓
A相切,動圓的圓心
M的軌跡記為
C.
(I)求曲線
C的方程;
(II)若點
為曲線
C上一點,求證:直線
與曲線
C有且只有一個交點.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
20.(本小題滿分14分)
已知圓
和橢圓
的一個公共點為
.
為橢圓
的右焦點,直線
與圓
相切于點
.
(Ⅰ)求
值和橢圓
的方程;
(Ⅱ)圓
上是否存在點
,使
為等腰三角形?若存在,求出點
的坐標.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖中心在原點,焦點在
軸上的橢圓,離心率
,且經(jīng)過拋物線
的焦點.
(I)求橢圓的標準方程;
(II)若過點B(2,0)的直線L(斜率不等于零)與橢圓交于不同的兩點E、F(E在B、F之間),試求
OBE與
OBF面積1:2,求直線L的方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
為橢圓的左右焦點,拋物線以
為頂點,
為焦點,設
為橢圓與拋物線的一個交點,橢圓離心率為
,且
,求
的值
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如下圖,橢圓中心在坐標原點,焦點在坐標軸上,A、B是頂點,F(xiàn)是左焦點;當BF⊥AB時,此類橢圓稱為 “黃金橢圓”,其離心率為
。類比“黃金橢圓”可推算出“黃金雙曲線”的離心率e=
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
橢圓的兩個焦點和短軸兩個頂點是有一個內(nèi)角為
的菱形的四個頂點,則橢圓的離心率為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
請閱讀以下材料,然后解決問題:
①設橢圓的長半軸長為
a,短半軸長為
b,則橢圓的面積為
ab②我們把由半橢圓C
1:
+
="1" (x≤0)與半橢圓C
2:
+
="1" (x≥0)合成的曲線稱作“果圓”,其中
=
+
,
a>0,b>c>0
如右上圖,設點
F0,
F1,
F2是相應橢圓的焦點,
A1,
A2和
B1,
B2是“果圓”與
x,
y軸的交點,若△
F0 F1 F2是邊長為1的等邊三角形,則上述“果圓”的面積為
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若橢圓
上存在一點M,它到左焦點的距離是它到右準線距離的2倍,則橢圓離心率的最小值為
.
查看答案和解析>>