【題目】一個(gè)盒子中裝有大小相同的2個(gè)白球、3個(gè)紅球;現(xiàn)從中先后有放回地任取球兩次,每次取一個(gè)球,看完后放回盒中.
(1)求兩次取得的球顏色相同的概率;
(2)若在2個(gè)白球上都標(biāo)上數(shù)字1,3個(gè)紅球上都標(biāo)上數(shù)字2,記兩次取得的球上數(shù)字之和為,求的概率分布列與數(shù)學(xué)期望.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某互聯(lián)網(wǎng)公司為了確定下一季度的前期廣告投入計(jì)劃,收集了近個(gè)月廣告投入量(單位:萬元)和收益(單位:萬元)的數(shù)據(jù)如下表:
月份 | ||||||
廣告投入量 | ||||||
收益 |
他們分別用兩種模型①,②分別進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,得到如圖所示的殘差圖及一些統(tǒng)計(jì)量的值:
(Ⅰ)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)選擇哪個(gè)模型?并說明理由;
(Ⅱ)殘差絕對(duì)值大于的數(shù)據(jù)被認(rèn)為是異常數(shù)據(jù),需要剔除:
(ⅰ)剔除異常數(shù)據(jù)后求出(Ⅰ)中所選模型的回歸方程
(ⅱ)若廣告投入量時(shí),該模型收益的預(yù)報(bào)值是多少?
附:對(duì)于一組數(shù)據(jù),,……,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市要建造一個(gè)邊長為的正方形市民休閑公園,將其中的區(qū)域開挖成一個(gè)池塘,如圖建立平面直角坐標(biāo)系后,點(diǎn)的坐標(biāo)為,曲線是函數(shù)圖像的一部分,過對(duì)邊上一點(diǎn)的區(qū)域內(nèi)作一次函數(shù)的圖像,與線段交于點(diǎn)(點(diǎn)不與點(diǎn)重合),且線段與曲線有且只有一個(gè)公共點(diǎn),四邊形為綠化風(fēng)景區(qū).
(1)寫出函數(shù)關(guān)系式;
(2)設(shè)點(diǎn)的橫坐標(biāo)為,將四邊形的面積表示成關(guān)于的函數(shù),并求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定兩個(gè)命題,p:對(duì)任意實(shí)數(shù)x都有x2+ax+1≥0恒成立;q:冪函數(shù)y=xa-1在(0,+∞)內(nèi)單調(diào)遞減;如果p與q中有且僅有一個(gè)為真命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的左右頂點(diǎn)分別為.直線和兩條漸近線交于點(diǎn),點(diǎn)在第一象限且,是雙曲線上的任意一點(diǎn).
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)是否存在點(diǎn)P使得為直角三角形?若存在,求出點(diǎn)P的個(gè)數(shù);
(3)直線與直線分別交于點(diǎn),證明:以為直徑的圓必過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列六個(gè)命題:
(1)若,則函數(shù)的圖像關(guān)于對(duì)稱.
(2)函數(shù)與在區(qū)間上都是增函數(shù).
(3)的反函數(shù)是
(4)無最大值也無最小值.
(5)的周期為.
(6)有對(duì)稱軸兩條,對(duì)稱中心三個(gè).
則正確題個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),求曲線在處的切線方程;
(2)當(dāng)時(shí),求函數(shù)的最小值;
(3)已知,且任意有,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列(公差不為零)和等差數(shù)列,如果關(guān)于的實(shí)系數(shù)方程有實(shí)數(shù)解,那么以下九個(gè)方程()中,無實(shí)數(shù)解的方程最多有( )
A.3個(gè)B.4個(gè)C.5個(gè)D.6個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足,對(duì)任意的,都有.
(1)求數(shù)列的遞推公式
(2)數(shù)列滿足,求數(shù)列的通項(xiàng)公式;
(3)在(2)的條件下,設(shè),問是否存在實(shí)數(shù)使得數(shù)列是單調(diào)遞增數(shù)列?若存在,求出的取值范圍;若不存在,請(qǐng)說明你的理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com