(本小題滿分14分)
已知各項(xiàng)均不相等的等差數(shù)列的前四項(xiàng)和為14,且恰為等比數(shù)列的前三項(xiàng)。
(1)分別求數(shù)列的前n項(xiàng)和
(2)設(shè)為數(shù)列的前n項(xiàng)和,若不等式對(duì)一切恒成立,求實(shí)數(shù)的最小值。
本試題主要考查等差數(shù)列和等比數(shù)列的去通項(xiàng)公式以及前n項(xiàng)和的問(wèn)題,并利用構(gòu)造新數(shù)列。利用錯(cuò)位相減法來(lái)求解前n項(xiàng)和,并研究數(shù)列的單調(diào)性問(wèn)題。通過(guò)作差法來(lái)得到。解決該試題的關(guān)鍵是對(duì)于通項(xiàng)公式的準(zhǔn)確求解。


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

數(shù)列為正項(xiàng)等比數(shù)列,且滿足;設(shè)正項(xiàng)數(shù)列的前n項(xiàng)和為Sn,滿足
(1)求的通項(xiàng)公式;
(2)設(shè)的前項(xiàng)的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列{an}滿足Sn+an=2n+1,
(1)寫(xiě)出a1,a2,a3,并推測(cè)an的表達(dá)式,(2)用數(shù)學(xué)歸納法證明所得的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

.(本小題滿分16分)
數(shù)列中,,,且
(1)求的通項(xiàng)公式;
(2)設(shè)中的任意一項(xiàng),是否存在,使成等比數(shù)列?如存在,試分別寫(xiě)出關(guān)于的一個(gè)表達(dá)式,并給出證明;
(3)證明:對(duì)一切

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分,(1)小問(wèn)6分,(2)小分6分.)
已知函數(shù),數(shù)列滿足,.
(1)求證:;
(2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在數(shù)列中,
(1)設(shè),證明:數(shù)列是等差數(shù)列。
(2)求數(shù)列的前項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

本題滿分14分)設(shè),圓軸正半軸的交點(diǎn)為,與曲線的交點(diǎn)為,直線軸的交點(diǎn)為.
(Ⅰ)求證:;
(Ⅱ)設(shè),,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

.(本題滿分12分)
設(shè)數(shù)列滿足
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)證明:Sn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

數(shù)列的通項(xiàng)公式是,若前n項(xiàng)的和為10,則項(xiàng)數(shù)n為(  )
A.11B.99C.120D.121

查看答案和解析>>

同步練習(xí)冊(cè)答案