精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓的離心率,且橢圓過點

1)求橢圓的標準方程;

2)設直線交于、兩點,點在橢圓上,是坐標原點,若,判定四邊形的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.

【答案】1;(2)是定值,其定值為.

【解析】

1)設橢圓的焦距為,根據題意得出關于、、的方程組,求出的值,即可得出橢圓的標準方程;

2)對直線的斜率是否存在進行分類討論,當直線軸時,可得出直線的方程為,可求出四邊形的面積;當直線的斜率存在時,設直線的方程為,設點、,將直線的方程與橢圓的方程聯立,列出韋達定理,求出點的坐標,將點的坐標代入橢圓的方程得出,計算出以及原點到直線的距離,通過化簡計算可得出四邊形的面積為,進而得證.

1)設橢圓的焦距為,由題意可得,解得,

因此,橢圓的標準方程為

2)當直線的斜率不存在時,直線的方程為.

若直線的方程為,聯立,可得,

此時,,四邊形的面積為,

同理,當直線的方程為時,可求得四邊形的面積也為

當直線的斜率存在時,設直線方程是

代人到,得,

,,,

,

,

到直線的距離,

,得,

在橢圓上,所以有,整理得

由題意知,四邊形為平行四邊形,

平行四邊形的面積為.

故四邊形的面積是定值,其定值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】2019年底,北京2022年冬奧組委會啟動志愿者全球招募,僅一個月內報名人數便突破60萬,其中青年學生約有50萬人.現從這50萬青年學生志愿者中,按男女分層抽樣隨機選取20人進行英語水平測試,所得成績(單位:)統計結果用莖葉圖記錄如下:

()試估計在這50萬青年學生志愿者中,英語測試成績在80分以上的女生人數;

()從選出的8名男生中隨機抽取2人,記其中測試成績在70分以上的人數為X,求的分布列和數學期望;

()為便于聯絡,現將所有的青年學生志愿者隨機分成若干組(每組人數不少于5000),并在每組中隨機選取個人作為聯絡員,要求每組的聯絡員中至少有1人的英語測試成績在70分以上的概率大于90%.根據圖表中數據,以頻率作為概率,給出的最小值.(結論不要求證明)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,,,且

(1)證明:平面;

(2)在線段上,是否存在一點,使得二面角的大小為?如果存在,求的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線)上的兩個動點,焦點為F.線段的中點為,且點到拋物線的焦點F的距離之和為8

1)求拋物線的標準方程;

2)若線段的垂直平分線與x軸交于點C,求面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】目前,中國有三分之二的城市面臨垃圾圍城的窘境. 我國的垃圾處理多采用填埋的方式,占用上萬畝土地,并且嚴重污染環(huán)境. 垃圾分類把不易降解的物質分出來,減輕了土地的嚴重侵蝕,減少了土地流失. 202051日起,北京市將實行生活垃圾分類,分類標準為廚余垃圾、可回收物、有害垃圾和其它垃圾四類 .生活垃圾中有30%~40%可以回收利用,分出可回收垃圾既環(huán)保,又節(jié)約資源. 如:回收利用1噸廢紙可再造出0.8噸好紙,可以挽救17棵大樹,少用純堿240千克,降低造紙的污染排放75%,節(jié)省造紙能源消耗40%~50.

現調查了北京市5個小區(qū)12月份的生活垃圾投放情況,其中可回收物中廢紙和塑料品的投放量如下表:

小區(qū)

小區(qū)

小區(qū)

小區(qū)

小區(qū)

廢紙投放量(噸)

5

5.1

5.2

4.8

4.9

塑料品投放量(噸)

3.5

3.6

3.7

3.4

3.3

(Ⅰ)從5個小區(qū)中任取1個小區(qū),求該小區(qū)12月份的可回收物中,廢紙投放量超過5噸且塑料品投放量超過3.5噸的概率;

(Ⅱ)從5個小區(qū)中任取2個小區(qū),記12月份投放的廢紙可再造好紙超過4噸的小區(qū)個數,求的分布列及期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某種籠具由內,外兩層組成,無下底面,內層和外層分別是一個圓錐和圓柱,其中圓柱與圓錐的底面周長相等,圓柱有上底面,制作時需要將圓錐的頂端剪去,剪去部分和接頭忽略不計,已知圓柱的底面周長為,高為,圓錐的母線長為.

1)求這種籠具的體積(結果精確到0.1);

2)現要使用一種紗網材料制作50籠具,該材料的造價為每平方米8元,共需多少元?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數, ,其中R …為自然對數的底數

)當時, 恒成立,求的取值范圍;

)求證: (參考數據: )

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)討論函數上的單調性;

(2)證明: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】己知函數.

1)當時,求的極值;

2)當時,函數的圖象與函數的圖象有唯一的交點,求的取值集合.

查看答案和解析>>

同步練習冊答案