精英家教網 > 高中數學 > 題目詳情
已知定點A(3,0)和定圓C:(x+3)2+y2=16,動圓和圓C相外切,并且過點A,求動圓圓心P的軌跡方程.

解:設P的坐標為(x,y).

∵圓C與圓P外切且過點A,

∴|PC|-|PA|=4.

∵|AC|=6>4,

∴點P的軌跡是以C、A為焦點,2a=4的雙曲線的右支.

a=2,c=3,∴b2=c2-a2=5.

(x>0)為動圓圓心P的軌跡方程.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(文科)已知定點A(0,-1),點M(x,y)在曲線y=x2(0<x<3)上運動,過點M作垂直于x軸的直線l,l交直線y=9于點N.
(1)求△AMN面積f (x);
(2)求f (x)的最大值及此時點M的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:013

已知定點A(3.0), B(0,3), 為使線段AB與拋物線y=-x2+m-1只有一個交點, 則m值為

[  ]

A.3   B.3或5  C.-3  D.以上都不對 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定點A(3,0)和定圓C:(x+3)2+y2=16,動圓和圓C相外切,并且過點A,求動圓圓心P的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定點A(3,0)和定圓C:(x+3)2+y2=16,動圓和圓C相外切,并且過點A,求動圓圓心P的軌跡方程.

查看答案和解析>>

同步練習冊答案