在平面直角坐標(biāo)系xOy中,曲線y=x2-6x+1與坐標(biāo)軸的交點(diǎn)都在圓C上.
(Ⅰ)求圓C的方程;
(Ⅱ)若圓C與直線x-y+a=0交與A,B兩點(diǎn),且OA⊥OB,求a的值.
分析:(Ⅰ)法一:寫出曲線與坐標(biāo)軸的交點(diǎn)坐標(biāo),利用圓心的幾何特征設(shè)出圓心坐標(biāo),構(gòu)造關(guān)于圓心坐標(biāo)的方程,通過解方程確定出圓心坐標(biāo),進(jìn)而算出半徑,寫出圓的方程;
法二:可設(shè)出圓的一般式方程,利用曲線與方程的對(duì)應(yīng)關(guān)系,根據(jù)同一性直接求出參數(shù),
(Ⅱ)利用設(shè)而不求思想設(shè)出圓C與直線x-y+a=0的交點(diǎn)A,B坐標(biāo),通過OA⊥OB建立坐標(biāo)之間的關(guān)系,結(jié)合韋達(dá)定理尋找關(guān)于a的方程,通過解方程確定出a的值.
解答:解:(Ⅰ)法一:曲線y=x2-6x+1與y軸的交點(diǎn)為(0,1),與x軸的交點(diǎn)為(3+2
2
,0),(3-2
2
,0).可知圓心在直線x=3上,故可設(shè)該圓的圓心C為(3,t),則有32+(t-1)2=(2
2
2+t2,解得t=1,故圓C的半徑為
32+(t-1)2
=3
,所以圓C的方程為(x-3)2+(y-1)2=9.
法二:圓x2+y2+Dx+Ey+F=0
x=0,y=1有1+E+F=0
y=0,x2 -6x+1=0與x2+Dx+F=0是同一方程,故有有D=-6,F(xiàn)=1,E=-2
即圓方程為x2+y2-6x-2y+1=0
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),其坐標(biāo)滿足方程組
x-y+a=0
(x-3) 2+(y-1) 2=9 
,消去y,得到方程2x2+(2a-8)x+a2-2a+1=0,由已知可得判別式△=56-16a-4a2>0.
在此條件下利用根與系數(shù)的關(guān)系得到x1+x2=4-a,x1x2=
a2-2a+1
2
①,
由于OA⊥OB可得x1x2+y1y2=0,又y1=x1+a,y2=x2+a,所以可得2x1x2+a(x1+x2)+a2=0②
由①②可得a=-1,滿足△=56-16a-4a2>0.故a=-1.
點(diǎn)評(píng):本題考查圓的方程的求解,考查學(xué)生的待定系數(shù)法,考查學(xué)生的方程思想,直線與圓的相交問題的解決方法和設(shè)而不求的思想,考查垂直問題的解決思想,考查學(xué)生分析問題解決問題的能力,屬于直線與圓的方程的基本題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,已知圓心在直線y=x+4上,半徑為2
2
的圓C經(jīng)過坐標(biāo)原點(diǎn)O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點(diǎn),點(diǎn)P在圓C上,且滿足PF=4,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點(diǎn).若點(diǎn)A的橫坐標(biāo)是
3
5
,點(diǎn)B的縱坐標(biāo)是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,若焦點(diǎn)在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•泰州三模)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設(shè)直線AC與BD的交點(diǎn)為P,求動(dòng)點(diǎn)P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東莞一模)在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn)為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設(shè)橢圓C的上下頂點(diǎn)分別為A1,A2,Q是橢圓C上異于A1,A2的任一點(diǎn),直線QA1,QA2分別交x軸于點(diǎn)S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對(duì)應(yīng)的△OAB的面積;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案