已知e1,e2是兩個(gè)單位向量,其夾角為θ,若向量m=2e1+3e2,則|m|=1的充要條件是( )
A.θ=π B.θ=
C.θ= D.θ=
A
【解析】由|m|=1,得m2=1,即(2e1+3e2)2=1.展開(kāi)得,4e+9e+12e1·e2=1,即4+9+12cos θ=1,所以cos θ=-1.又θ∈[0,π],∴θ=π.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專(zhuān)用)高考數(shù)學(xué)(文)專(zhuān)題階段評(píng)估模擬卷4練習(xí)卷(解析版) 題型:填空題
某幾何體的三視圖如圖所示,則其體積為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專(zhuān)用)高考數(shù)學(xué)(文)專(zhuān)題階段評(píng)估模擬卷2練習(xí)卷(解析版) 題型:填空題
已知sin α-3cos α=0,則=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專(zhuān)用)高考數(shù)學(xué)(文)專(zhuān)題階段評(píng)估模擬卷1練習(xí)卷(解析版) 題型:填空題
設(shè)函數(shù)f(x)的定義域?yàn)?/span>D,若存在非零實(shí)數(shù)l使得對(duì)于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱(chēng)函數(shù)f(x)為M上的l高調(diào)函數(shù).現(xiàn)給出下列命題:
①函數(shù)f(x)=x是R上的1高調(diào)函數(shù);
②函數(shù)f(x)=sin 2x為R上的π高調(diào)函數(shù);
③如果定義域?yàn)?/span>[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是[2,+∞).
其中正確的命題是________.(寫(xiě)出所有正確命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專(zhuān)用)高考數(shù)學(xué)(文)專(zhuān)題階段評(píng)估模擬卷1練習(xí)卷(解析版) 題型:選擇題
函數(shù)y=f(x),x∈D,若存在常數(shù)C,對(duì)任意的x1∈D,存在唯一的x2∈D使得=C,則稱(chēng)函數(shù)f(x)在D上的幾何平均數(shù)為C.已知f(x)=x3,x∈[1,2],則函數(shù)f(x)=x3在[1,2]上的幾何平均數(shù)為( )
A. B.2
C.4 D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專(zhuān)題體系通關(guān)訓(xùn)練解答題押題練D組練習(xí)卷(解析版) 題型:解答題
若兩個(gè)橢圓的離心率相等,則稱(chēng)它們?yōu)?/span>“相似橢圓”.如圖,在直角坐標(biāo)系xOy中,已知橢圓C1:=1,A1,A2分別為橢圓C1的左、右頂點(diǎn).橢圓C2以線(xiàn)段A1A2為短軸且與橢圓C1為“相似橢圓”.
(1)求橢圓C2的方程;
(2)設(shè)P為橢圓C2上異于A1,A2的任意一點(diǎn),過(guò)P作PQ⊥x軸,垂足為Q,線(xiàn)段PQ交橢圓C1于點(diǎn)H.求證:H為△PA1A2的垂心.(垂心為三角形三條高的交點(diǎn))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專(zhuān)題體系通關(guān)訓(xùn)練解答題押題練C組練習(xí)卷(解析版) 題型:解答題
某創(chuàng)業(yè)投資公司擬投資開(kāi)發(fā)某種新能源產(chǎn)品,估計(jì)能獲得10萬(wàn)元到1 000萬(wàn)元的投資收益.現(xiàn)準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:資金y(單位:萬(wàn)元)隨投資收益x(單位:萬(wàn)元)的增加而增加,且獎(jiǎng)金不超過(guò)9萬(wàn)元,同時(shí)獎(jiǎng)金不超過(guò)投資收益的20%.
(1)若建立函數(shù)y=f(x)模型制定獎(jiǎng)勵(lì)方案,試用數(shù)學(xué)語(yǔ)言表述該公司對(duì)獎(jiǎng)勵(lì)函數(shù)f(x)模型的基本要求,并分析函數(shù)y=+2是否符合公司要求的獎(jiǎng)勵(lì)函數(shù)模型,并說(shuō)明原因;
(2)若該公司采用模型函數(shù)y=作為獎(jiǎng)勵(lì)函數(shù)模型,試確定最小的正整數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專(zhuān)題體系通關(guān)訓(xùn)練填空題押題練F組練習(xí)卷(解析版) 題型:填空題
平面向量a,b滿(mǎn)足|a+2b|=,且a+2b平行于直線(xiàn)y=2x+1,若b=(2,-1),則a=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專(zhuān)題體系通關(guān)訓(xùn)練填空題押題練C組練習(xí)卷(解析版) 題型:填空題
已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(0,+∞)時(shí),都有不等式f(x)+xf′(x)>0成立,若a=40.2f(40.2),b=(log43)f(log43),c=f ,則a,b,c的大小關(guān)系是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com