【題目】關(guān)于數(shù)列有下列命題:
①數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=an﹣1(a∈R),則{an}為等差或等比數(shù)列;
②數(shù)列{an}為等差數(shù)列,且公差不為零,則數(shù)列{an}中不會(huì)有am=an(m≠n),
③一個(gè)等差數(shù)列{an}中,若存在ak+1>ak>0(k∈N*),則對(duì)于任意自然數(shù)n>k,都有an>0;
④一個(gè)等比數(shù)列{an}中,若存在自然數(shù)k,使akak+1<0,則對(duì)于任意n∈N* , 都有anan+1<0,
其中正確命題的序號(hào)是

【答案】②③④
【解析】解:對(duì)于(1),數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=an﹣1(a∈R),
當(dāng)a=0時(shí),a1=﹣1,a2=a3=…=0,{an}既不是等差又不是等比數(shù)列,故①錯(cuò)誤;
對(duì)于②,數(shù)列{an}為等差數(shù)列,且公差不為零,則數(shù)列{an}中不會(huì)有am=an(m≠n),
假設(shè)am=an(m≠n),則a1+(m﹣1)d=a1+(n﹣1)d,整理可得m=n,這與m≠n矛盾,
故假設(shè)不成立,原命題正確,即②正確;
對(duì)于③,一個(gè)等差數(shù)列{an}中,若存在ak+1>ak>0(k∈N*),由ak+1=ak+d知ak+d>ak>0,故d>0,
所以,對(duì)于任意自然數(shù)n>k,都有an>0,③正確;
對(duì)于④,一個(gè)等比數(shù)列{an}中,若存在自然數(shù)k,使akak+1<0,則q <0,即q<0,
則對(duì)于任意n∈N* , 都有anan+1=q <0,正確.
綜上所述,正確命題的序號(hào)是②③④.
所以答案是:②③④.
【考點(diǎn)精析】關(guān)于本題考查的命題的真假判斷與應(yīng)用,需要了解兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知c>0,且c≠1,設(shè)p:函數(shù)y=cx在R上單調(diào)遞減;q:函數(shù)f(x)=x2﹣2cx+1在( ,+∞)上為增函數(shù),若“p且q”為假,“p或q”為真,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).若不等式對(duì)恒成立,則的最小值等于____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙、丁4名同學(xué)被隨機(jī)地分到A、B、C三個(gè)社區(qū)參加社會(huì)實(shí)踐,要求每個(gè)社區(qū)至少有一名同學(xué).
(1)求甲、乙兩人都被分到A社區(qū)的概率;
(2)求甲、乙兩人不在同一個(gè)社區(qū)的概率;
(3)設(shè)隨機(jī)變量ξ為四名同學(xué)中到A社區(qū)的人數(shù),求ξ的分布列和Eξ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù) .當(dāng)x=2時(shí),函數(shù) 取得極值
(1)求函數(shù)的解析式;
(2)若函數(shù) =k有3個(gè)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱臺(tái)中, 平面, , 分別為 的中點(diǎn).

(1)求證: 平面;

(2)若,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}的前n項(xiàng)和為Sn , 若對(duì)于任意的正整數(shù)n都有Sn=2an﹣3n.
(1)設(shè)bn=an+3,求證:數(shù)列{bn}是等比數(shù)列,并求出{an}的通項(xiàng)公式;
(2)求數(shù)列{nan}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知圓心在x軸上、半徑為2的圓C位于y軸右側(cè),且與直線 相切.
(1)求圓C的方程;
(2)在圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=1與圓O:x2+y2=1相交于不同的兩點(diǎn)A,B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對(duì)應(yīng)的△OAB的面積;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的普通方程與曲線的直角坐標(biāo)方程;

(2)為曲線上任一點(diǎn),過點(diǎn)作曲線的切線為切點(diǎn)),求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案