(15分)已知函數(shù)
.
(1)若
的切線,函數(shù)
處取得極值1,求
,
,
的值;
證明:
;
(3)若
,且函數(shù)
上單調(diào)遞增,
求實數(shù)
的取值范圍。
(1)見解析。(2)
本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運用。
(1)因為
的切線,函數(shù)
處取得極值1,考查了導(dǎo)數(shù)的幾何意義的運用,以及導(dǎo)數(shù)判定函數(shù)單調(diào)性問題,解得結(jié)論。
(2)由
,
,
即
.分析得到。
處取得極值1,且
(3)由
則
構(gòu)造函數(shù)證明恒成立問題。
解:
解得
,則
,令
得
由
,
,
即
.
處取得極值1,且
得
,故
,
令
故
即
綜上:
(2)由
則
由函數(shù)
上單調(diào)遞增,知
上恒成立,
即
上恒成立,
當(dāng)
當(dāng)
,
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分14分)
已知函數(shù)f(x)=lnx+
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)m
R,對任意的a∈(-l,1),總存在x
o∈[1,e],使得不等式ma - (x
o)<0成立,求實數(shù)m的取值范圍;
(Ⅲ)證明:ln
2 l+ 1n
22,+…+ln
2 n>
∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知函數(shù)
.
(1)當(dāng)
時,求
的極值;
(2)當(dāng)
時,試比較
與
的大;
(3)求證:
(
).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)
已知函數(shù)
在(0,1)上是增函數(shù).(1)求
的取值范圍;
(2)設(shè)
(
),試求函數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分15分) 已知函數(shù)
且
在
處取得極小值.
(1)求m的值。
(2)若
在
上是增函數(shù),求實數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間和最小值;
(Ⅱ)若函數(shù)
在
上是最小值為
,求
的值;
(Ⅲ)當(dāng)
(其中
="2.718" 28…是自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
.
(Ⅰ)討論函數(shù)
的單調(diào)性;
(Ⅱ)設(shè)
.如果對任意
,
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分) 已知:三次函數(shù)
,在
上單調(diào)遞增,在
上單調(diào)遞減
(1)求函數(shù)
f (
x)的解析式;
(2)求函數(shù)
f (
x)在區(qū)間[-2,2]的最值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知函數(shù)
在區(qū)間
上是減函數(shù),則
的最小值是( )
查看答案和解析>>