【題目】已知拋物線x2=4y,圓C:x2+(y﹣2)2=4,點M(x0 , y0),(x0>0,y0>4)為拋物線上的動點,過點M的圓C的兩切線,設其斜率分別為k1 , k2
(Ⅰ)求證:k1+k2= ,k1k2=
(Ⅱ)求過點M的圓的兩切線與x軸圍成的三角形面積S的最小值.

【答案】解:(I)證明:設切線方程y﹣y0=k(x﹣x0),即kx﹣y+y0﹣kx0=0, 切線與x軸交為( ,0),圓心到直線的距離d= =2
整理得:
由兩切線的斜率分別為k1 , k2
則k1+k2= ,k1k2=
(Ⅱ)S= |( )﹣( )|y0
= y02
= y02
= y02
=
=
=2[ +(y0﹣4)+8]
≥2(2 +8)
=32.
當且僅當 =y0﹣4,即y0=8時取等號.
故兩切線與x軸圍成的三角形面積S的最小值為32
【解析】(I)設切線:y﹣y0=k(x﹣x0),切線與x軸交于點( ,0),圓心到切線的距離d= =2,結(jié)合韋達定理,可得k1+k2= ,k1k2= .(Ⅱ)求出過點M的圓的兩切線與x軸圍成的三角形面積S的表達式,由基本不等式可求出兩切線與x軸圍成的三角形面積S的最小值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設某等腰三角形的底角為α,頂角為β,且cosβ= . (Ⅰ)求sinα的值;
(Ⅱ)若函數(shù)f(x)=tanx在[﹣ ,α]上的值域與函數(shù)g(x)=2sin(2x﹣ )在[0,m]上的值域相同,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A、B是函數(shù)y=f(x),x∈[a,b]圖象的兩個端點,M(x,y)是f(x)上任意一點,過M(x,y)作MN⊥x軸交直線AB于N,若不等式|MN|≤k恒成立,則稱函數(shù)f(x)在[a,b]上“k階線性近似”.
(1)若f(x)=x+ ,x∈[ ,2],證明:f(x)在[ ,2]上“ 階線性近似”;
(2)若f(x)=x2在[﹣1,2]上“k階線性近似”,求實數(shù)k的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐V﹣ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC= ,O,M分別為AB,VA的中點.
(1)求證:VB∥平面MOC;
(2)求證:平面MOC⊥平面VAB
(3)求三棱錐V﹣ABC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】狄利克雷是德國著名數(shù)學家,函數(shù)D(x)= 被稱為狄利克雷函數(shù),下面給出關(guān)于狄利克雷函數(shù)D(x)的五個結(jié)論: ①若x是無理數(shù),則D(D(x))=0;
②函數(shù)D(x)的值域是[0,1];
③函數(shù)D(x)偶函數(shù);
④若T≠0且T為有理數(shù),則D(x+T)=D(x)對任意的x∈R恒成立;
⑤存在不同的三個點A(x1 , D(x1)),B(x2 , D(x2)),C(x3 , D(x3)),使得△ABC為等邊角形.
其中正確結(jié)論的序號是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x| <2x<4},B={x|0<log2x<2}.
(1)求A∩B和A∪B;
(2)記M﹣N={x|x∈M,且xN},求A﹣B與B﹣A.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為了解用戶對其產(chǎn)品的滿意度,從某地區(qū)隨機調(diào)查了100個用戶,得到用戶對產(chǎn)品的滿意度評分頻率分布表如下:

組別

分組

頻數(shù)

頻率

第一組

(50,60]

10

0.1

第二組

(60,70]

20

0.2

第三組

(70,80]

40

0.4

第四組

(80,90]

25

0.25

第五組

(90,100)

5

0.05

合計

100

1


(1)根據(jù)上面的頻率分布表,估計該地區(qū)用戶對產(chǎn)品的滿意度評分超過70分的概率;
(2)請由頻率分布表中數(shù)據(jù)計算眾數(shù)、中位數(shù),平均數(shù),根據(jù)樣本估計總體的思想,若平均分低于75分,視為不滿意.判斷該地區(qū)用戶對產(chǎn)品是否滿意?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C:x2+y2﹣2x﹣4y+1=0.
(1)求過點M(3,1)的圓C的切線方程;
(2)若直線l:ax﹣y+4=0與圓C相交于A,B兩點,且弦AB的長為 ,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系內(nèi),已知A(3,2)是圓C上一點,折疊該圓兩次使點A分別與圓上不相同的兩點(異于點A)重合,兩次的折痕方程分別為x﹣y+1=0和x+y﹣7=0,若圓C上存在點P,使∠MPN=90°,其中M,N的坐標分別為(﹣m,0),(m,0),則實數(shù)m的取值集合為

查看答案和解析>>

同步練習冊答案