【題目】已知常數(shù)數(shù)列的前項(xiàng)和為,且
(1)求數(shù)列的通項(xiàng)公式;
(2)若且數(shù)列是單調(diào)遞增數(shù)列,求實(shí)數(shù)的取值范圍;
(3)若數(shù)列滿足:對(duì)于任意給定的正整數(shù),是否存在使 ?若存在,求的值(只要寫(xiě)出一組即可);若不存在,說(shuō)明理由.
【答案】(1);(2);(3)見(jiàn)解析
【解析】
(1)利用作差法可證得數(shù)列為等差數(shù)列,由等差數(shù)列性質(zhì)求得通項(xiàng)公式;
(2)由相鄰兩項(xiàng)作差,分奇偶討論結(jié)合遞增性質(zhì)即可求得參數(shù)的取值范圍;
(3)假設(shè)存在,列出等式可由p、q的范圍判斷是否存在.
(1)∵∴,
∴
化簡(jiǎn)得:(常數(shù)),
∴數(shù)列是以1為首項(xiàng),公差為的等差數(shù)列;
(2)又∵,,
∴,∴
①當(dāng)是奇數(shù)時(shí),∵,∴,
令,∴
∵
∴,且,∴;
②當(dāng)是偶數(shù)時(shí),∵,∴,
令,∴
∵
∴,且,∴;
綜上可得:實(shí)數(shù)的取值范圍是.
(3)由(1)知,,又∵,
設(shè)對(duì)任意正整數(shù)k,都存在正整數(shù),使,
∴,∴
令,則(或)
∴ (或)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 的定義域?yàn)镽.
(1)求實(shí)數(shù)m的范圍;
(2)若m的最大值為n,當(dāng)正數(shù)a,b滿足 時(shí),求4a+7b的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:x2=2y的焦點(diǎn)為F,過(guò)拋物線上一點(diǎn)M作拋物線C的切線l,l交y軸于點(diǎn)N.
(1)判斷△MFN的形狀;
(2)若A,B兩點(diǎn)在拋物線C上,點(diǎn)D(1,1)滿足 + = ,若拋物線C上存在異于A,B的點(diǎn)E,使得經(jīng)過(guò)A,B,E三點(diǎn)的圓與拋物線在點(diǎn)E處的有相同的切線,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,直線.
(1)若直線與圓交于不同的兩點(diǎn),當(dāng)時(shí),求的值.
(2)若是直線上的動(dòng)點(diǎn),過(guò)作圓的兩條切線,切點(diǎn)為,探究:直線是否過(guò)定點(diǎn);
(3)若為圓的兩條相互垂直的弦,垂足為,求四邊形的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)銷商小王對(duì)其所經(jīng)營(yíng)的某一型號(hào)二手汽車的使用年數(shù)(0<≤10)與銷售價(jià)格(單位:萬(wàn)元/輛)進(jìn)行整理,得到如下的對(duì)應(yīng)數(shù)據(jù):
使用年數(shù) | 2 | 4 | 6 | 8 | 10 |
售價(jià) | 16 | 13 | 9.5 | 7 | 4.5 |
(Ⅰ)試求關(guān)于的回歸直線方程;
(附:回歸方程中,
(Ⅱ)已知每輛該型號(hào)汽車的收購(gòu)價(jià)格為萬(wàn)元,根據(jù)(Ⅰ)中所求的回歸方程,
預(yù)測(cè)為何值時(shí),小王銷售一輛該型號(hào)汽車所獲得的利潤(rùn)最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且cosC= .
(1)求B;
(2)設(shè)CM是角C的平分線,且CM=1,b=6,求cos∠BCM.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是定義在(0,+∞)上的增函數(shù),且滿足f(xy)=f(x)+f(y),f(2)=1.
(1)求f(8)的值;
(2)求不等式f(x)-f(x-2)>3的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的上、下焦點(diǎn)分別為,上焦點(diǎn)到直線 4x+3y+12=0的距離為3,橢圓C的離心率e=.
(I)若P是橢圓C上任意一點(diǎn),求的取值范圍;
(II)設(shè)過(guò)橢圓C的上頂點(diǎn)A的直線與橢圓交于點(diǎn)B(B不在y軸上),垂直于的直線與交于點(diǎn)M,與軸交于點(diǎn)H,若,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè).
討論的單調(diào)區(qū)間;
當(dāng)時(shí),在上的最小值為,求在上的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com