已知向量,,函數(shù),.
(1)求函數(shù)的圖像的對(duì)稱中心坐標(biāo);
(2)將函數(shù)圖像向下平移個(gè)單位,再向左平移個(gè)單位得函數(shù)的圖像,試寫出的解析式并作出它在上的圖像.
(1);(2).
解析試題分析:本題主要考查向量的數(shù)量積、降冪公式、誘導(dǎo)公式、兩角和與差的正弦公式、函數(shù)的對(duì)稱中心、函數(shù)圖像的平移、三角函數(shù)的圖像等基礎(chǔ)知識(shí),考查學(xué)生的畫圖能力、計(jì)算能力和數(shù)形結(jié)合思想.第一問,先利用向量的數(shù)量積得到的解析式,再利用降冪公式、誘導(dǎo)公式、兩角和與差的正弦公式,化簡(jiǎn)表達(dá)式,使之化簡(jiǎn)成的形式,數(shù)形結(jié)合得到對(duì)稱中心坐標(biāo);第二問,利用函數(shù)圖像的平移法則:左+右-,上+下-,利用五點(diǎn)作圖法作出要求范圍內(nèi)的圖像.
試題解析:(1)
4分
由于得:,所以.
所以的圖像的對(duì)稱中心坐標(biāo)為 6分
(2)=,列表:
描點(diǎn)、連線得函數(shù)在上的圖象如圖所示:
12分
考點(diǎn):向量的數(shù)量積、降冪公式、誘導(dǎo)公式、兩角和與差的正弦公式、函數(shù)的對(duì)稱中心、函數(shù)圖像的平移、三角函數(shù)的圖像.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),其中向量,,.
(1)求的單調(diào)遞增區(qū)間;
(2)在中,分別是角的對(duì)邊,已知,的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<)的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為,且圖象上一個(gè)最低點(diǎn)為M(,-2).
(1)求f(x)的解析式;
(2)當(dāng)x∈[,]時(shí),求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)在給定的平面直角坐標(biāo)系中,畫函數(shù),的簡(jiǎn)圖;
(2)求的單調(diào)增區(qū)間;
(3) 函數(shù)的圖象只經(jīng)過怎樣的平移變換就可得到的圖象?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=2·sincos-sin(x+π).
(1)求f(x)的最小正周期;
(2)若將f(x)的圖象向右平移個(gè)單位,得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間[0,π]上的最大值和最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com