若正數(shù)a,b滿足ab=a+b+3,則ab的取值范圍是( 。
A、[6,+∞)B、[9,+∞)C、(-∞,9]D、(-∞,6]
分析:由于兩個數(shù)是正數(shù),等式中有ab,a+b,利用基本不等式將得到關(guān)于ab的不等式,解不等式求出ab.
解答:解:∵a,b是正數(shù)
∴a+b≥2
ab

∵ab=a+b+3
ab≥2
ab
+3

ab
=t(t≥0)
則t2-2t-3≥0
解得t≥3或t≤-1
∴ab≥9
故選B
點評:本題考查利用基本不等式求函數(shù)的最值需要注意的是:一正、二定、三相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若正數(shù)a,b滿足ab=a+b+3,則ab的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若正數(shù)a,b滿足ab=a+b+3,則a+b的取值范圍是
[6,+∞)
[6,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若正數(shù)a,b滿足ab=8+a+b,則ab的取值范圍是
[16,+∞)
[16,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若正數(shù)a,b滿足ab=a+b+8,則ab的最小值為
16
16

查看答案和解析>>

同步練習(xí)冊答案