已知三個(gè)函數(shù)①y=x+
4
x
,②y=sinx+
4
sinx
(0<x<π),③y=log3x+logx81(x>1),其中函數(shù)的最小值為4的函數(shù)是( 。
A、①B、②C、③D、①②③都不是
分析:對(duì)于①,取特殊值x=-1時(shí),y=-5顯然最小值不是4,對(duì)于②最小值取4時(shí)sinx=2,這不可能,對(duì)于③根據(jù)基本不等式成立的條件直接運(yùn)用基本不等式即可求出最小值.
解答:解:①y=x+
4
x
,當(dāng)x=-1時(shí),y=-5顯然最小值不是4,故不正確;
②y=sinx+
4
sinx
(0<x<π),y=sinx+
4
sinx
≥4,此時(shí)sinx=2,這不可能,故不正確;
③y=log3x+logx81(x>1),log3x>0,logx81>0,∴y=log3x+logx81≥4,此時(shí)x=9,故正確;
故選C.
點(diǎn)評(píng):本題主要考查了利用基本不等式求函數(shù)的值域,解題的關(guān)鍵是最值能否取到,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三個(gè)函數(shù)y=|x|+1,y=
x2-2x+1+t
,y=
1
2
(x+
t
x
)(x>0),其中第二個(gè)函數(shù)和第三個(gè)函數(shù)中的t為同一常數(shù),且0<t<1,它們各自的最小值恰好是方程x3+ax2+bx+c=0的三個(gè)根.
(1)求證:(a-1)2=4(b+1);
(2)設(shè)x1,x2是函數(shù)f(x)=x3+ax2+bx+c的兩個(gè)極值點(diǎn),求|x1-x2|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知三個(gè)函數(shù)①y=x+
4
x
,②y=sinx+
4
sinx
(0<x<π),③y=log3x+logx81(x>1),其中函數(shù)的最小值為4的函數(shù)是( 。
A.①B.②C.③D.①②③都不是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省金華市十校聯(lián)考高二(下)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知三個(gè)函數(shù)y=|x|+1,y=,y=(x+)(x>0),其中第二個(gè)函數(shù)和第三個(gè)函數(shù)中的t為同一常數(shù),且0<t<1,它們各自的最小值恰好是方程x3+ax2+bx+c=0的三個(gè)根.
(1)求證:(a-1)2=4(b+1);
(2)設(shè)x1,x2是函數(shù)f(x)=x3+ax2+bx+c的兩個(gè)極值點(diǎn),求|x1-x2|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年高二(上)段考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知三個(gè)函數(shù)①y=x+,②y=sinx+(0<x<π),③y=log3x+logx81(x>1),其中函數(shù)的最小值為4的函數(shù)是( )
A.①
B.②
C.③
D.①②③都不是

查看答案和解析>>

同步練習(xí)冊(cè)答案