(本題滿分12分)

  斜率為2的直線經(jīng)過拋物線的焦點(diǎn),且與拋物線相交于兩點(diǎn),求線段的長。

 

【答案】

.

【解析】本試題主要是考查了利用拋物線的性質(zhì)和拋物線的定義結(jié)合焦點(diǎn)弦公式可知|AB|的長為 xA+xB+4。這樣利用直線方程與拋物線方程聯(lián)立方程組,得到韋達(dá)定理中的根與系數(shù)的關(guān)系可知結(jié)論。

解:拋物線y2=8x的焦點(diǎn)F(2,0),準(zhǔn)線方程為x=-2

∴直線AB的方程為y=2(x-2)

聯(lián)立方程 y=2(x-2)與

可得x2-8x+4=0

∴xA+xB=8,xA•xB=4

(法一):由拋物線的定義可知,AB=AF+BF=xA+2+xB+2=xA+xB+4=10

 

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分12分)已知數(shù)列是首項為,公比的等比數(shù)列,,

設(shè),數(shù)列.

(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分,第1小題6分,第2小題6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求AB;

(2) 若,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)

設(shè)函數(shù),為常數(shù)),且方程有兩個實(shí)根為.

(1)求的解析式;

(2)證明:曲線的圖像是一個中心對稱圖形,并求其對稱中心.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題

(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)

如圖所示,直二面角中,四邊形是邊長為的正方形,上的點(diǎn),且⊥平面

(Ⅰ)求證:⊥平面

(Ⅱ)求二面角的大;

(Ⅲ)求點(diǎn)到平面的距離.

 

查看答案和解析>>

同步練習(xí)冊答案