已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R).
(1)證明:直線l與圓相交;
(2)求直線l被圓截得的弦長(zhǎng)最小時(shí)的直線l的方程.
2xy-5=0.
(1)按直線系;(2)由線線垂直,先求斜率,再用點(diǎn)斜式.
解:(1)證明:直線l的方程可化為(xy-4)+m(2xy-7)=0.
∴ 直線l恒過定點(diǎn)A(3,1).             (5分)
∵(3-1)2+(1-2)2=5<25,
∴點(diǎn)A是圓C內(nèi)部一定點(diǎn),從而直線l與圓始終有兩個(gè)公共點(diǎn),
即直線與圓相交.                                                 (8分)
(2)圓心為C(1,2),要使截得的弦長(zhǎng)最短,當(dāng)且僅當(dāng)lAC
C(1,2),A(3,1),所以
進(jìn)而, 直線l的方程為y-1=2(x-3),即2xy-5=0.              (12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線(kR)與圓C:相交于點(diǎn)A、B, M為弦AB中點(diǎn).
(Ⅰ) 當(dāng)k=1時(shí),求弦AB的中點(diǎn)M的坐標(biāo)及AB弦長(zhǎng);
(Ⅱ)求證:直線與圓C總有兩個(gè)交點(diǎn);
(Ⅲ)當(dāng)k變化時(shí)求弦AB的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)中,圓,圓。
(Ⅰ)在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,分別寫出圓的極坐標(biāo)方程,并求出圓的交點(diǎn)坐標(biāo)(用極坐標(biāo)表示);
(Ⅱ)求圓的公共弦的參數(shù)方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知圓C:x2+y2+2x+ay-3=0(a為實(shí)數(shù))上任意一點(diǎn)關(guān)于直線:x-y+2=0的對(duì)稱點(diǎn)都在圓C上,則a=        .         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線與圓交于、兩點(diǎn),且、關(guān)于直線對(duì)稱,則弦的長(zhǎng)為                                     
A. 2B.3C. 4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

、若直線與曲線恰有一個(gè)公共點(diǎn),則實(shí)數(shù)的值為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知圓C:與直線相切,且圓D與圓C關(guān)
于直線對(duì)稱,則圓D的方程是___________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

與直線相交于兩點(diǎn), 若 (為原點(diǎn)),則圓的半徑值的為        ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

經(jīng)過點(diǎn)(0,-1)作圓的切線,切點(diǎn)分別為A和B,點(diǎn)Q是圓C上一點(diǎn),則面積的最大值為      。

查看答案和解析>>

同步練習(xí)冊(cè)答案