【題目】國家每年都會對中小學(xué)生進(jìn)行體質(zhì)健康監(jiān)測,一分鐘跳繩是監(jiān)測的項(xiàng)目之一.今年某小學(xué)對本校六年級300名學(xué)生的一分鐘跳繩情況做了統(tǒng)計(jì),發(fā)現(xiàn)一分鐘跳繩個(gè)數(shù)最低為10,最高為189.現(xiàn)將跳繩個(gè)數(shù)分成,,,,,6組,并繪制出如下的頻率分布直方圖.

1)若一分鐘跳繩個(gè)數(shù)達(dá)到160為優(yōu)秀,求該校六年級學(xué)生一分鐘跳繩為優(yōu)秀的人數(shù);

2)上級部門要對該校體質(zhì)監(jiān)測情況進(jìn)行復(fù)查,發(fā)現(xiàn)每組男、女學(xué)生人數(shù)比例有很大差別,組男、女人數(shù)之比為,組男、女人數(shù)之比為,組男、女人數(shù)之比為,組男、女人數(shù)之比為,組男、女人數(shù)之比為,組男、女人數(shù)之比為.試估計(jì)此校六年級男生一分鐘跳繩個(gè)數(shù)的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表,結(jié)果保留整數(shù)).

【答案】(1)優(yōu)秀的人數(shù)為(2)平均數(shù)

【解析】

1)根據(jù)頻率分布直方圖求出優(yōu)秀的頻率為,再根據(jù)該校六年級學(xué)生總?cè)藬?shù)和概率求出優(yōu)秀的人數(shù).

2)先求出頻率分布直方圖每組數(shù)值的中間值,然后分別乘以對應(yīng)的頻數(shù),再相加,最后除以總數(shù)即可得平均數(shù).

解:(1)由圖可知,優(yōu)秀的頻率為:

,

故該校六年級學(xué)生一分鐘跳繩為優(yōu)秀的人數(shù)為.

2組男生人數(shù)為,的中點(diǎn)值為25,

組男生人數(shù)為,的中點(diǎn)值為55,

組男生人數(shù)為,的中點(diǎn)值為85,

組男生人數(shù)為,的中點(diǎn)值為115,

組男生人數(shù)為,的中點(diǎn)值為145,

組男生人數(shù)為,的中點(diǎn)值為175,

故可估計(jì)此校六年級男生一分鐘跳繩個(gè)數(shù)的平均數(shù)

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的三個(gè)頂點(diǎn)均在拋物線上,給出下列命題:

①若直線過點(diǎn),則存在使拋物線的焦點(diǎn)恰為的重心;

②若直線過點(diǎn),則存在點(diǎn)使為直角三角形;

③存在,使拋物線的焦點(diǎn)恰為的外心;

④若邊的中線軸,,則的面積為.

其中正確的序號為______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為,曲線的參數(shù)方程為:為參數(shù)),為直線上距離為的兩動點(diǎn),點(diǎn)為曲線上的動點(diǎn)且不在直線上.

1)求曲線的普通方程及直線的直角坐標(biāo)方程.

2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C,(ab0)過點(diǎn)(1)且離心率為

1)求橢圓C的方程;

(2)設(shè)橢圓C的右頂點(diǎn)為P,過定點(diǎn)(2,﹣1)的直線lykx+m與橢圓C相交于異于點(diǎn)PA,B兩點(diǎn),若直線PA,PB的斜率分別為k1k2,求k1+k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某污水處理廠要在一個(gè)矩形污水處理池(ABCD)的池底水平鋪設(shè)污水凈化管道(管道構(gòu)成Rt△FHE,H是直角項(xiàng)點(diǎn))來處理污水.管道越長,污水凈化效果越好.設(shè)計(jì)要求管道的接口H是AB的中點(diǎn),E,F(xiàn)分別落在線段BC,AD上.已知AB=20米,AD=米,記∠BHE=

(1)試將污水凈化管道的長度L表示為的函數(shù),并寫出定義域;

(2)當(dāng)取何值時(shí),污水凈化效果最好?并求出此時(shí)管道的長度L.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,點(diǎn)在線段上運(yùn)動,則

A.直線平面

B.三棱錐的體積為定值

C.異面直線所成角的取值范圍是

D.直線與平面所成角的正弦值的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,動點(diǎn)滿足直線與直線的斜率之積為,設(shè)點(diǎn)的軌跡為曲線.

1)求曲線的方程;

2)若過點(diǎn)的直線與曲線交于,兩點(diǎn),過點(diǎn)且與直線垂直的直線與相交于點(diǎn),求的最小值及此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求曲線與曲線兩交點(diǎn)所在直線的極坐標(biāo)方程;

(2)若直線的極坐標(biāo)方程為,直線軸的交點(diǎn)為,與曲線相交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓在圓外部且與圓相切,同時(shí)還在圓內(nèi)部與圓相切.

1)求動圓圓心的軌跡方程;

2)記(1)中求出的軌跡為,軸的兩個(gè)交點(diǎn)分別為,上異于、的動點(diǎn),又直線軸交于點(diǎn),直線、分別交直線、兩點(diǎn),求證:為定值.

查看答案和解析>>

同步練習(xí)冊答案