精英家教網 > 高中數學 > 題目詳情
(本題滿分12分)
如圖所示的幾何體是由以正三角形為底面的直棱柱被平面所截而得. 的中點.

(1)當時,求平面與平面的夾角的余弦值;
(2)當為何值時,在棱上存在點,使平面
(1)(2)2

試題分析:(1)分別取、的中點,連接、
以直線、分別為軸、軸、軸建立如圖所示的空間直角坐標系,

,則、、的坐標分別為
(1,0,1)、(0,,3)、(-1,0,4),
=(-1,,2),=(-2,0,3)
設平面的法向量,

,可取         …… 3分
平面的法向量可以取           
           …… 5分
∴平面與平面的夾角的余弦值為.                  ……6分
(2)在(1)的坐標系中,,=(-1,,2),=(-2,0,-1).
上,設,則


于是平面的充要條件為

由此解得,    ……10分
即當=2時,在上存在靠近的第一個四等分點,使平面. ……12分
點評:空間向量解決立體幾何問題的關鍵是建立合適的坐標系,找準相關點的坐標
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)在四棱錐中,平面,,,
.
(Ⅰ)證明;
(Ⅱ)求二面角的正弦值;
(Ⅲ)設為棱上的點,滿足異面直線所成的角為,求的長.
 

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,長方體中,,點上,且

(Ⅰ)證明:平面;
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在直三棱柱中,,分別是棱上的點(點 不同于點),且的中點.

求證:(1)平面平面;
(2)直線平面

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,四棱錐S-ABCD 的底面是正方形,每條側棱的長都是底面邊長的倍,P為側棱SD上的點.

(Ⅰ)求證:AC⊥SD;
(Ⅱ)若SD⊥平面PAC,則側棱SC上是否存在一點E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,試說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知直線,平面,且,,給出下列命題
(1)若,則    (2)若,則
(3)若,則  (4)若,則
其中正確的命題個數是( )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分16分)
如圖,在四棱錐中,底面是矩形,平面,.以的中點為球心、為直徑的球面切于點

(1)求證:PD⊥平面;
(2)求直線與平面所成的角的正弦值;
(3)求點到平面的距離.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(14分)如右圖,簡單組合體ABCDPE,其底面ABCD為邊長為的正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC=.

(1)若N為線段PB的中點,求證:EN//平面ABCD;
(2)求點到平面的距離.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分15分)如圖,在四棱錐中,底面是正方形,側棱底面,,的中點,作于點

(1)證明:平面.
(2)證明:平面.
(3)求二面角的大小.

查看答案和解析>>

同步練習冊答案