對于上可導(dǎo)的任意函數(shù),若滿足,則必有(   ).
A.B.
C.D.
C
,∴當(dāng)時,,則函數(shù)上單調(diào)遞減,當(dāng)時,,則函數(shù)上單調(diào)遞增,即函數(shù)處取得最小值,∴,,則將兩式相加得
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x2-4,設(shè)曲線y=f(x)在點(diǎn)(xn,f(xn))處的切線與x軸的交點(diǎn)為(xn+1,0)(n∈N +),其中xn為正實(shí)數(shù).
(1)用xn表示xn+1
(2)若x1=4,記an=lg,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xn}的通項(xiàng)公式;
(3)若x1=4,bn=xn-2,Tn是數(shù)列{bn}的前n項(xiàng)和,證明Tn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)當(dāng)時,求曲線在點(diǎn)處的切線方程;
(2)求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)曲線y=在點(diǎn)(3,2)處的切線與直線ax+y+3=0垂直,則a=(  )
A.2B.-2C.D.-

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),的導(dǎo)函數(shù)。  (1)求函數(shù)的單調(diào)遞減區(qū)間;
(2)若對一切的實(shí)數(shù),有成立,求的取值范圍; 
(3)當(dāng)時,在曲線上是否存在兩點(diǎn),使得曲線在 兩點(diǎn)處的切線均與直線交于同一點(diǎn)?若存在,求出交點(diǎn)縱坐標(biāo)的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(2014·南京模擬)已知曲線f(x)=lnx在點(diǎn)(x0,f(x0))處的切線經(jīng)過點(diǎn)(0,1),則x0的值為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知實(shí)數(shù),函數(shù)。
(1)當(dāng)時,討論函數(shù)的單調(diào)性;
(2)若在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍;
(3)若當(dāng)時,函數(shù)圖象上的點(diǎn)均在不等式,所表示的平面區(qū)域內(nèi),求實(shí)數(shù) 的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若存在正實(shí)數(shù),對于任意,都有,則稱函數(shù) 上是有
界函數(shù).下列函數(shù)①;  ②;  ③;  ④,
其中“在上是有界函數(shù)”的序號為          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一個物體的運(yùn)動方程為,其中的單位是米,的單位是秒,那么物體在秒末的瞬時速度是(  )
A.米/秒B.米/秒C.米/秒D.米/秒

查看答案和解析>>

同步練習(xí)冊答案