【題目】已知橢圓的兩個焦點(diǎn)是和,并且經(jīng)過點(diǎn),拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)恰好是橢圓的右頂點(diǎn).
(Ⅰ)求橢圓和拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn)為拋物線內(nèi)一個定點(diǎn),過作斜率分別為的兩條直線交拋物線于點(diǎn),且分別是的中點(diǎn),若,求證:直線過定點(diǎn).
【答案】(1);(2).
【解析】試題分析:(1)根據(jù)橢圓的定義,可以求出,再根據(jù)求出即可寫出橢圓方程及拋物線方程;(2)設(shè)直線AB方程,聯(lián)立拋物線方程化簡,由根與系數(shù)的關(guān)系易得M的坐標(biāo),同理可得N的坐標(biāo),寫出MN直線方程,可以看出直線過定點(diǎn).
試題解析:(1)設(shè)橢圓的標(biāo)準(zhǔn)方程為,焦距是,則由題意得:
, ,∴,橢圓的標(biāo)準(zhǔn)方程為: .
∴右頂點(diǎn)的坐標(biāo)為,設(shè)拋物線的標(biāo)準(zhǔn)方程為: ,∴,∴拋物線的標(biāo)準(zhǔn)方程為: .
(2) ,由得
,則,所以,同理
∴,則,即
其恒過定點(diǎn)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)不等式x2≤5x﹣4的解集為A.
(1)求集合A;
(2)設(shè)關(guān)于x的不等式x2﹣(a+2)x+2a≤0的解集為M,若MA,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ,與軸不重合的直線經(jīng)過左焦點(diǎn),且與橢圓相交于, 兩點(diǎn),弦的中點(diǎn)為,直線與橢圓相交于, 兩點(diǎn).
(Ⅰ)若直線的斜率為1,求直線的斜率;
(Ⅱ)是否存在直線,使得成立?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|ax+1|+|2x﹣1|(a∈R).
(1)當(dāng)a=1時,求不等式f(x)≥2的解集;
(2)若f(x)≤2x在x∈[,1]時恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲船以每小時 海里的速度向正北方航行,乙船按固定方向勻速直線航行,當(dāng)甲船位于A1處時,乙船位于甲船的北偏西105°方向的B1處,此時兩船相距20海里,當(dāng)甲船航行20分鐘到達(dá)A2處時,乙船航行到甲船的北偏西120°方向的B2處,此時兩船相距 海里,問乙船每小時航行多少海里?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下關(guān)于命題的說法正確的有(選擇所有正確命題的序號).
(1)“若,則函數(shù)在其定義域內(nèi)是減函數(shù)”是真命題;
(2)命題“若,則”的否命題是“若,則”;
(3)命題“若都是偶函數(shù),則也是偶數(shù)”的逆命題為真命題;
(4)命題“若,則”與命題“若,則”等價.
A. (1)(3) B. (2)(3) C. (2)(4) D. (3)(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足log3an+1=log3an+1(n∈N*),且a2+a4+a6=9,則log (a5+a7+a9)的值是( )
A.﹣
B.﹣5
C.5
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A,B,C的坐標(biāo)分別為A(3,0),B(0,3),C(cos α,sin α),α∈.
(1)若||=||,求角α的值;
(2)若=-1,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com