【題目】如圖,在平面直角坐標(biāo)系中,橢圓經(jīng)過點,離心率為. 已知過點的直線與橢圓交于兩點

(1)求橢圓的方程;

(2)試問軸上是否存在定點,使得為定值.若存在,求出點的坐標(biāo);若不存在,請說明理由.

【答案】(1);(2).

【解析】分析:(1)先根據(jù)已知得到三個方程解方程組即得橢圓C的方程. (2) 設(shè)N(n,0),先討論l斜率不存在的情況得到n=4,再證明當(dāng)N(4,0)時,對斜率為k的直線lyk(x),恒有=12.

詳解:(1)離心率e,所以caba,

所以橢圓C的方程為

因為橢圓C經(jīng)過點,所以\,

所以b2=1,所以橢圓C的方程為

2)設(shè)N(n,0),

當(dāng)l斜率不存在時,A(,y),B(,-y),y2=1-,

=(n)2y2=(n)2n2n,

當(dāng)l經(jīng)過左右頂點時,=(-2-n)(2-n)=n2-4.

n2nn2-4,n=4.

下面證明當(dāng)N(4,0)時,對斜率為k的直線lyk(x),恒有=12.

設(shè)A(x1,y1),B(x2,y2),

消去y,得(4k2+1)x2k2xk2-4=0,

所以x1x2x1x2,

所以=(x1-4)(x2-4)+y1y2

=(x1-4)(x2-4)+k2(x1)(x2)

=(k2+1)x1x2-(4+k2)(x1x2)+16+k2

=(k2+1) -(4+k2) +16+k2

+16=12.

所以在x軸上存在定點N(4,0),使得為定值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校微信公眾號收到非常多的精彩留言,學(xué)校從眾多留言者中抽取了100人參加“學(xué)校滿意度調(diào)查”,其留言者年齡集中在之間,根據(jù)統(tǒng)計結(jié)果,做出頻率分布直方圖如下:

(1)求這100位留言者年齡的平均數(shù)和中位數(shù);

(2)學(xué)校從參加調(diào)查的年齡在的留言者中,按照分層抽樣的方法,抽出了6人參加“精彩留言”經(jīng)驗交流會,贈與年齡在的留言者每人一部價值1000元的手機(jī),年齡在的留言者每人一套價值700元的書,現(xiàn)要從這6人中選出3人作為代表發(fā)言,求這3位發(fā)言者所得紀(jì)念品價值超過2300元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某個部件由三個元件按如圖所示的方式連接而成,元件1或元件2正常工作,且元件3正常工作,則部件正常工作.設(shè)三個電子元件的使用壽命(單位:時)均服從正態(tài)分布N(1000,502),且各個元件能否正常工作相互獨立,那么該部件的使用壽命超過1000小時的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線,若直線上存在點,過點引圓的兩條切線,使得,則實數(shù)的取值范圍是( )

A. B. [,]

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務(wù)情況,隨機(jī)訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為

(1)求頻率分布圖中的值,并估計該企業(yè)的職工對該部門評分不低于80的概率;

(2)從評分在的受訪職工中,隨機(jī)抽取2人,求此2人評分都在的概率..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1) 求函數(shù)的反函數(shù);

(2)試問:函數(shù)的圖象上是否存在關(guān)于坐標(biāo)原點對稱的點若存在,求出這些點的坐標(biāo);若不存在,說明理由;

(3)若方程的三個實數(shù)根滿足: ,,求實數(shù)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,DCC1中點.

(1)求證:AB1⊥平面A1BD;

(2)求銳二面角A-A1D-B的余弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】張先生2018年年底購買了一輛排量的小轎車,為積極響應(yīng)政府發(fā)展森林碳匯(指森林植物吸收大氣中的二氧化碳并將其固定在植被或土壤中)的號召,買車的同時出資1萬元向中國綠色碳匯基金會購買了 2畝荒山用于植樹造林.科學(xué)研究表明:轎車每行駛3000公里就要排放1噸二氧化碳,林木每生長1立方米,平均可吸收1.8噸二氧化碳.

1)若張先生第一年(即2019年)會用車1.2萬公里,以后逐年増加1000公里,則該轎車使用10年共要排放二氧化碳多少噸?

2)若種植的林木第一年(即2019年)生長了1立方米,以后每年以10%的生長速度遞增,問林木至少生長多少年,吸收的二氧化碳的量超過轎車使用10年排出的二氧化碳的量(參考數(shù)據(jù):,,?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)實部為正數(shù)的復(fù)數(shù)z滿足,且(1+2i)z在復(fù)平面上對應(yīng)的點在第一、三象限的角平分線上.

1)求復(fù)數(shù)z

2)若為純虛數(shù) , m的值.

查看答案和解析>>

同步練習(xí)冊答案