已知橢圓的離心率為,且過點(diǎn),為其右焦點(diǎn).

(1)求橢圓的方程;

(2)設(shè)過點(diǎn)的直線與橢圓相交于、兩點(diǎn)(點(diǎn)兩點(diǎn)之間),若的面積相等,試求直線的方程.

 

【答案】

(1);(2)。

【解析】

試題分析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013090213025780648600/SYS201309021303281121609399_DA.files/image003.png">,所以,.  

設(shè)橢圓方程為,又點(diǎn)在橢圓上,所以,

解得,   

所以橢圓方程為.  

(2)易知直線的斜率存在,

設(shè)的方程為,  由消去整理,得

,   

由題意知,

解得

設(shè),,則, ①,. ②.

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013090213025780648600/SYS201309021303281121609399_DA.files/image021.png">與的面積相等,

所以,所以. ③ 由①③消去. ④

代入②得. ⑤

將④代入⑤,

整理化簡(jiǎn)得,解得,經(jīng)檢驗(yàn)成立. 

所以直線的方程為.

考點(diǎn):橢圓的標(biāo)準(zhǔn)方程;橢圓的簡(jiǎn)單性質(zhì);直線與橢圓的綜合應(yīng)用。

點(diǎn)評(píng):本題考查了橢圓方程的求法,以及直線與橢圓的綜合應(yīng)用,為圓錐曲線的常規(guī)題,應(yīng)當(dāng)掌握。考查了學(xué)生綜合分析問題、解決問題的能力,知識(shí)的遷移能力以及運(yùn)算能力。解題時(shí)要認(rèn)真審題,仔細(xì)分析。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的離心率為e,兩焦點(diǎn)分別為F1、F2,拋物線C以F1為頂點(diǎn)、F2為焦點(diǎn),點(diǎn)P為拋物線和橢圓的一個(gè)交點(diǎn),若e|PF2|=|PF1|,則e的值為( 。
A、
1
2
B、
2
2
C、
3
3
D、以上均不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的離心率為
1
2
,焦點(diǎn)是(-3,0),(3,0),則橢圓方程為(  )
A、
x2
36
+
y2
27
=1
B、
x2
36
-
y2
27
=1
C、
x2
27
+
y2
36
=1
D、
x2
27
-
y2
36
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在由圓O:x2+y2=1和橢圓C:
x2
a2
+y2
=1(a>1)構(gòu)成的“眼形”結(jié)構(gòu)中,已知橢圓的離心率為
6
3
,直線l與圓O相切于點(diǎn)M,與橢圓C相交于兩點(diǎn)A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,使得
OA
OB
=
1
2
OM
2
,若存在,求此時(shí)直線l的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知橢圓的離心率為
2
2
,準(zhǔn)線方程為x=±8,求這個(gè)橢圓的標(biāo)準(zhǔn)方程;
(2)假設(shè)你家訂了一份報(bào)紙,送報(bào)人可能在早上6:30-7:30之間把報(bào)紙送到你家,你父親離開家去工作的時(shí)間在早上7:00-8:00之間,請(qǐng)你求出父親在離開家前能得到報(bào)紙(稱為事件A)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點(diǎn),M是橢圓上異于A,B的任意一點(diǎn),已知橢圓的離心率為e,右準(zhǔn)線l的方程為x=m.
(1)若e=
1
2
,m=4,求橢圓C的方程;
(2)設(shè)直線AM交l于點(diǎn)P,以MP為直徑的圓交MB于Q,若直線PQ恰過原點(diǎn),求e.

查看答案和解析>>

同步練習(xí)冊(cè)答案