(09年長(zhǎng)沙一中第八次月考理)(本小題滿分12分)如圖,已知正方形ABCD和直角梯形ACEF所在的平面互相垂直,EF//AC,∠CAF=∠AFE=90º,AB=,AF=FE=1.

(1)求證EC//平面BDF;

(2)求二面角A-DF-B的大;

(3)試在線段AC上確定一點(diǎn)P,使得PF與BC所成的角是60°.

解析: 解法一: (1)記AC與BD的交點(diǎn)為O,連接OF, ∵OC=EF=1 EF//AC∴四邊形EFOC是平行四邊形,

∴CE∥OF.∵平面BDF,平面BDF,∴CE∥平面BDF.

(2)在平面AFD中過A作AS⊥DF于S,連結(jié)BS,∵AB⊥AF, AB⊥AD, ∴AB⊥平面ADF,∴AS是BS在平面ADF上的射影,

由三垂線定理得BS⊥DF.∴∠BSA是二面角A―DF―B的平面角.

在RtΔASB中,

∴二面角A―DF―B的大小為60º.

(3)設(shè)CP=t(0≤t≤2),作PQ⊥AB于Q,則PQ∥AD,

∵PQ⊥AB,PQ⊥AF,,∴PQ⊥平面ABF,平面ABF,∴PQ⊥QF.在RtΔPQF中,∠FPQ=60º,PF=2PQ.

∵ΔPAQ為等腰直角三角形,∴又∵ΔPAF為直角三角形,∴,∴所以t=1或t=3(舍去),即點(diǎn)P是AC的中點(diǎn).

解法二: 空間響亮求解參照計(jì)分.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(09年長(zhǎng)沙一中第八次月考理)(13分)已知直線L:x-y-3=0,拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸正半軸上,S是拋物線C上任意一點(diǎn),T是直線L上任意一點(diǎn),若|ST|的最小值為d>0時(shí),點(diǎn)S的橫坐標(biāo)為2.

(1)求拋物線方程以及d的值;

(2)過拋物線C的對(duì)稱軸上任一點(diǎn)作直線與拋物線交于兩點(diǎn),點(diǎn)是點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn).設(shè)點(diǎn)分有向線段所成的比為,

證明:;

(3)設(shè)R為拋物線準(zhǔn)線上任意一點(diǎn),過R作拋物線的兩條切線,切點(diǎn)分別為M,N,直線MN是否恒過一定點(diǎn)?若恒過定點(diǎn),請(qǐng)指出定點(diǎn);若不恒過定點(diǎn),請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年長(zhǎng)沙一中第八次月考理)(13分)若存在實(shí)常數(shù),使得函數(shù)對(duì)其定義域上的任意實(shí)數(shù)分別滿足:,則稱直線的“隔離直線”.已知,(其中為自然對(duì)數(shù)的底數(shù)).

(Ⅰ)求的極值;

        (Ⅱ) 函數(shù)是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年長(zhǎng)沙一中第八次月考理)(本小題滿分12分)我校文化體育藝術(shù)節(jié)的乒乓球決賽在甲乙兩人中進(jìn)行,比賽規(guī)則如下:比賽采用7局4勝制(先勝4局這獲勝即比賽結(jié)束),在每一局比賽中,先得11分的一方為勝方;比賽沒有平局,10平后,先連得2分的一方為勝方

(1)根據(jù)以往戰(zhàn)況,每局比賽甲勝乙的概率為0.6,設(shè)比賽的場(chǎng)數(shù)為,求的分布列和期望;

(2)若雙方在每一分的爭(zhēng)奪中甲勝的概率也為0.6,求決勝局中甲在以8:9落后的情況下最終以12:10獲勝的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年長(zhǎng)沙一中第八次月考理)(12分)已知中,,,,

(1)求關(guān)于的表達(dá)式;

(2)求的值域;

查看答案和解析>>

同步練習(xí)冊(cè)答案