在三棱錐中,是邊長(zhǎng)為的等邊三角形,,分別是的中點(diǎn).

(1)求證:∥平面;

(2)求證:平面⊥平面;

(3)求三棱錐的體積.

 

 

 

【答案】

(1)分別為的中點(diǎn),

平面,平面∥平面.       ------4分

(2)連結(jié),中點(diǎn),

 ,

同理, ,

,,

,,,

⊥平面

平面

平面⊥平面.  ----------9分

(3)由(2)可知垂直平面為三棱錐的高,且

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在三棱錐中,是邊長(zhǎng)為的等邊三角形,,分別是的中點(diǎn).

(Ⅰ)求證:∥平面

(Ⅱ)求證:平面⊥平面;

(Ⅲ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省高三8月摸底考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

在三棱錐中,是邊長(zhǎng)為的等邊三角形,分別是的中點(diǎn).

(Ⅰ)求證:∥平面;

(Ⅱ)求證:平面⊥平面;

(Ⅲ)求三棱錐的體積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省高州市高三上學(xué)期期末考試數(shù)學(xué)文卷 題型:解答題

(本小題共14分)

在三棱錐中,是邊長(zhǎng)為的等邊三角形,分別是的中點(diǎn).

(Ⅰ)求證:∥平面;

(Ⅱ)求證:平面⊥平面;

(Ⅲ)求三棱錐的體積.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題12分)在三棱錐中,是邊長(zhǎng)為的等邊三角形,,中點(diǎn).

(Ⅰ)在棱上求一點(diǎn),使得∥平面;

(Ⅱ)求證:平面⊥平面.

查看答案和解析>>

同步練習(xí)冊(cè)答案