【題目】已知定點,動點P是圓M:上的任意一點,線段NP的垂直平分線和半徑MP相交于點Q.
求的值,并求動點Q的軌跡C的方程;
若圓的切線l與曲線C相交于A,B兩點,求面積的最大值.
【答案】(1);(2)3
【解析】
推導(dǎo)出為定值根據(jù)橢圓定義得動點Q的軌跡是以點M、N為焦點的橢圓且,即,,,由此能求出點Q的軌跡C的方程.
設(shè)切線方程為,由直線與圓相切,得由,得:,利用根的判別式、韋達(dá)定理、弦長公式,結(jié)合已知條件能求出的面積最大值.
解:由已知條件得,又,為定值.
根據(jù)橢圓定義得動點Q的軌跡是以點M、N為焦點的橢圓.
且,即,,,
點Q的軌跡C的方程為:.
直線l不可能與x軸平行,則可設(shè)切線方程為,
由直線與圓相切,得,
設(shè),,
由,消去x得:,
,
,.
,
當(dāng)且僅當(dāng),即時等號成立.
此時,,又,
,時,的面積最大,最大值為3.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為邊長為2的菱形,∠DAB=60°,∠ADP=90°,面ADP⊥面ABCD,點F為棱PD的中點.
(1)在棱AB上是否存在一點E,使得AF∥面PCE,并說明理由;
(2)當(dāng)二面角D﹣FC﹣B的余弦值為時,求直線PB與平面ABCD所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右焦點分別為,,過且垂直于軸的焦點弦的弦長為,過的直線交橢圓于,兩點,且的周長為.
(1)求橢圓的方程;
(2)已知直線,互相垂直,直線過且與橢圓交于點,兩點,直線過且與橢圓交于,兩點.求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題;命題函數(shù)在區(qū)間上有零點.
(1)當(dāng)時,若為真命題,求實數(shù)的取值范圍;
(2)若命題是命題的充分不必要條件,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的上、下焦點分別為,,右頂點為B,且滿足
Ⅰ求橢圓的離心率e;
Ⅱ設(shè)P為橢圓上異于頂點的點,以線段PB為直徑的圓經(jīng)過點,問是否存在過的直線與該圓相切?若存在,求出其斜率;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的離心率,左、右焦點分別為, ,點滿足: 在線段的中垂線上.
(Ⅰ)求橢圓的方程;
(Ⅱ)若斜率為()的直線與軸、橢圓順次相交于點、、,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)某校夏令營有3名男同學(xué)A、B、C和3名女同學(xué)X、Y、Z,其年級情況如下表:
一年級 | 二年級 | 三年級 | |
男同學(xué) | A | B | C |
女同學(xué) | X | Y | Z |
現(xiàn)從這6名同學(xué)中隨機選出2人參加知識競賽(每人被選到的可能性相同).
①用表中字母列舉出所有可能的結(jié)果;
②設(shè)M為事件“選出的2人來自不同年級且恰有1名男同學(xué)和1名女同學(xué)”,求事件M發(fā)生的概率.
(2)節(jié)日前夕,小李在家門前的樹上掛了兩串彩燈.這兩串彩燈的第一次閃亮相互獨立,且都在通電后的4秒內(nèi)任一時刻等可能發(fā)生,然后每串彩燈以4秒為間隔閃亮.那么這兩串彩燈同時通電后,它們第一次閃亮的時刻相差不超過2秒的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com