直線經(jīng)過橢圓的一個焦點和一個頂點,則該橢圓的離心率為.
A.B.C.D.
A
本題考查橢圓的標(biāo)準(zhǔn)方程、數(shù)形結(jié)合思想。
由于直線與坐標(biāo)軸的交點為,由題意,橢圓的焦點在軸上,故,從而該橢圓的離心率,選A。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題


橢圓上一點M到焦點的距離為2,的中點,則等于(  )
A.2B.4 C.6 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓)的兩個焦點分別為,點P在橢圓上,且滿足,,直線與圓相切,與橢圓相交于A,B兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)證明為定值(O為坐標(biāo)原點)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓的中心為坐標(biāo)原點,焦點在軸上,焦點到相應(yīng)準(zhǔn)線的距離以及離心率均為,直線軸交于點,與橢圓交于相異兩點,且
(1)求橢圓方程;    
(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
已知橢圓的長軸長是短軸長的倍,是左,右焦點.
(1)若,且,,求、的坐標(biāo);
(2)在(1)的條件下,過動點作以為圓心、以1為半徑的圓的切線是切點),且使,求動點的軌跡方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若點在橢圓上,、分別是橢圓的兩焦點,且,則的面積是(  )
A.2B.C.1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓的中心在坐標(biāo)原點,焦點在軸上,橢圓的短軸端點和焦點所組成的四邊形為正方形,短軸長為2.
(1)求橢圓的方程;
(2)設(shè)直線且與橢圓相交于A,B兩點,當(dāng)P是AB的中點時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若橢圓C的焦點和頂點分別是雙曲線的頂點和焦點,則橢圓C的方程是_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

打開“幾何畫板”軟件進(jìn)行如下操作:
①用畫圖工具在工作區(qū)畫一個大小適中的圖C;
②用取點工具分別在圓C上和圓C外各取一個點A,B;
③用構(gòu)造菜單下對應(yīng)命令作出線段AB的垂直平分線;
④作出直線AC。
設(shè)直線AC與直線相交于點P,當(dāng)點B為定點,點A在圓C上運動時,點P的軌跡是(   )
A、橢圓       B、雙曲線       C、拋物線       D、圓

查看答案和解析>>

同步練習(xí)冊答案