(本小題滿分l2分)已知數(shù)列{an}中,a1=1,a2=3且2an+1=an+2+an(n∈N*).數(shù)列{bn}的前n項和為Sn,其中b1=-,bn+1=-Sn(n∈N*).
(1)求數(shù)列{an}和{bn}的通項公式;
(2)若Tn=++…+,求Tn的表達式
(1)an=2n-1;bn=
(2)Tn=-+(n-1)×3n-1.
【解析】解: (1)∵2an+1=an+2+an,∴數(shù)列{an}是等差數(shù)列,∴公差d=a2-a1=2,∴an=2n-1.∵bn+1=-Sn,∴bn=-Sn-1(n≥2).∴bn+1-bn=-bn,則bn+1=bn.又∵b2=-S1=1,=-≠,
∴數(shù)列{bn}從第二項開始是等比數(shù)列,
∴bn=
(2)∵n≥2時,=(2n-1)·3n-2,∴Tn=++…+=-+3×30+5×31+7×32+…+(2n-1)×3n-2,∴3Tn=-2+3×31+5×32+7×33+…+(2n-1)×3n-1,
錯位相減并整理得Tn=-+(n-1)×3n-1.
科目:高中數(shù)學 來源:2011-2012學年山東省高三下學期模擬沖刺考試理科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分l2分)已知橢圓的的右頂點為A,離心率,過左焦點作直線與橢圓交于點P,Q,直線AP,AQ分別與直線交于點.
(Ⅰ)求橢圓的方程;
(Ⅱ)證明以線段為直徑的圓經(jīng)過焦點.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年貴州省高三年級第五次月考文科數(shù)學 題型:解答題
(本小題滿分l2分)(注意:在試題卷上作答無效)
求經(jīng)過A(2,-1),和直線x+y=1相切,且圓心在直線y=-2x上的圓的方程
(I)求出圓的標準方程
(II)求出(I)中的圓與直線3x+4y=0相交的弦長AB
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年廣東省高三上學期10月月考理科數(shù)學卷 題型:解答題
(本小題滿分l2分)設命題:函數(shù)()的值域是;命題:指數(shù)函數(shù)在上是減函數(shù).若命題“或”是假命題,求實數(shù)的范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com