【題目】一對父子參加一個親子摸獎游戲,其規(guī)則如下:父親在裝有紅色、白色球各兩個的甲袋子里隨機取兩個球,兒子在裝有紅色、白色、黑色球各一個的乙袋子里隨機取一個球,父子倆取球互相獨立,兩人各摸球一次合在一起稱為一次摸獎,他們?nèi)〕龅娜齻球的顏色情況與他們獲得的積分對應(yīng)如下表:
所取球的情況 | 三個球均為紅色 | 三個球均為不同色 | 恰有兩球為紅色 | 其他情況 |
所獲得的積分 | 180 | 90 | 60 | 0 |
(1)求一次摸獎中,所取的三個球中恰有兩個是紅球的概率;
(2)設(shè)一次摸獎中,他們所獲得的積分為,求的分布列及均值(數(shù)學(xué)期望);
(3)按照以上規(guī)則重復(fù)摸獎三次,求至少有兩次獲得積分為60的概率.
【答案】(1);(2)分布列見解析,;(3).
【解析】
試題分析:(1)所取三個球恰有兩個是紅球,包含兩類基本事件,即父親取出兩個紅球,兒子取出一個不是紅球;父親取出兩球為一紅一白,兒子取出一球為紅球,然后利用古典概型概率計算公式及互斥事件的加法公式求得答案;(2)求出的取值,再求出取各個值的概,列出分布列,再由期望公式求期望;(3)由二項分布的定義知,三次摸獎中恰好獲得個積分的次數(shù),然后結(jié)合互斥事件的概率公式求得答案.
試題解析:
(1)設(shè)所取三個球恰有兩個是紅球為事件,則事件包含兩類基本事件:父親取出兩個紅球,兒子取出一個不是紅球,其概率;
父親取出兩球為一紅一白,兒子取出一球為紅色,其概率為,
故.
(2)可以取180,90,60,0,取各個值的概率分別為:
,,,,
所求分布列為:
180 | 90 | 60 | 0 | |
隨機變量的期望.
(3)由二項分布的定義知,三次摸獎中恰好獲得60個積分的次數(shù),
則,
故所求概率為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求的單調(diào)區(qū)間;
(2)若為整數(shù), 且當時,, 求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=(x﹣a)2lnx,a∈R.
(I)若x=e是y=f(x)的極值點,求實數(shù)a的值;
(Ⅱ)若函數(shù)y=f(x)﹣4e2只有一個零點,求實數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)如是函數(shù)的極值點,求實數(shù)的值并討論的單調(diào)性;
(2)若是函數(shù)的極值點,且恒成立,求實數(shù)的取值范圍(注:已知常數(shù)滿足).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某服裝廠每天的固定成本是30000元,每天最大規(guī)模的生產(chǎn)量是件.每生產(chǎn)一件服裝,成本增加100元,生產(chǎn)件服裝的收入函數(shù)是,記,分別為每天生產(chǎn)件服裝的利潤和平均利潤().
(1)當時,每天生產(chǎn)量為多少時,利潤有最大值;
(2)每天生產(chǎn)量為多少時,平均利潤有最大值,并求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓與軸,軸的正半軸分別交于兩點,原點到直線的距離為,該橢圓的離心率為.
(1)求橢圓的方程;
(2)過點的直線與橢圓交于兩個不同的點,求線段的垂直平分線在軸上截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人在如圖所示的直角邊長為4米的三角形地塊的每個格點(指縱、橫直線的交叉點以及三角形頂點)處都種了一株相同品種的作物.根據(jù)歷年的種植經(jīng)驗,一株該種作物的年收獲(單位:)與它的“相近”作物株數(shù)之間的關(guān)系如下表所示:
1 | 2 | 3 | 4 | |
51 | 48 | 45 | 42 |
這里,兩株作物“相近”是指它們之間的直線距離不超過1米.
(1)從三角形地塊的內(nèi)部和邊界上分別隨機選取一株作物,求它們恰好“相近”的概率;
(2)在所種作物中堆積選取一株,求它的年收獲量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com