關于實數(shù)a,b,c以下敘述錯誤的是


  1. A.
    命題“a,b都是零”的否定形式是“a,b都不是零”
  2. B.
    命題“a,b至少有一個是零”的否定形式是“a,b都不是零”
  3. C.
    命題“a,b,c至多兩個是零”的否定形式是“a,b,c都是零”
  4. D.
    命題“a,b,c至少兩個是零”的否定形式是“a,b,c至多一個是零”
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•宿遷一模)【選做題】本題包括A、B、C、D四小題,請選定其中兩題,并在相應的答題區(qū)域內(nèi)作答.若多做,則按作答的前兩題評分.解答時應寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,已知AB,CD是圓O的兩條弦,且AB是線段CD的 垂直平分線,若AB=6,CD=2
5
,求線段AC的長度.
B.選修4-2:矩陣與變換(本小題滿分10分)
已知矩陣M=
21
1a
的一個特征值是3,求直線x-2y-3=0在M作用下的新直線方程.
C.選修4-4:坐標系與參數(shù)方程(本小題滿分10分)
在平面直角坐標系xOy中,已知曲線C的參數(shù)方程是
x=cosα
y=sinα+1
(α是參數(shù)),若以O為極點,x軸的正半軸為極軸,取與直角坐標系中相同的單位長度,建立極坐標系,求曲線C的極坐標方程.
D.選修4-5:不等式選講(本小題滿分10分)
已知關于x的不等式|ax-1|+|ax-a|≥1的解集為R,求正實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•肇慶二模)已知函數(shù)f(x)=
-x3+ax2+bx,(x<1)
c(ex-1-1),(x≥1)
x=0,x=
2
3
處存在極值.
(1)求實數(shù)a,b的值;
(2)函數(shù)y=f(x)的圖象上存在兩點A,B使得△AOB是以坐標原點O為直角頂點的直角三角形,且斜邊AB的中點在y軸上,求實數(shù)c的取值范圍;
(3)當c=e時,討論關于x的方程f(x)=kx(k∈R)的實根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•溫州二模)如圖,F(xiàn)1,F(xiàn)2是橢圓
x22
+y2=1的左、右焦點,M,N是以F1F2為直徑的圓上關于X軸對稱的兩個動點.
(I)設直線MF1、NF2的斜率分別為k1,k2,求k1•k2值;
(II)直線MF1和NF2與橢圓的交點分別為A,B和C、D.問是若存在實數(shù)λ,使得λ(|AB|+|CD|)=|AB|•|CD|恒成立.若存在,求實數(shù)λ的值.若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

附加題:(選做題:在下面A、B、C、D四個小題中只能選做兩題)
A.選修4-1:幾何證明選講
如圖,已知AB、CD是圓O的兩條弦,且AB是線段CD的垂直平分線,
已知AB=6,CD=2
5
,求線段AC的長度.
B.選修4-2:矩陣與變換
已知二階矩陣A有特征值λ1=1及對應的一個特征向量e1=
1
1
和特征值λ2=2及對應的一個特征向量e2=
1
0
,試求矩陣A.
C.選修4-4:坐標系與參數(shù)方程
在直角坐標系xOy中,已知曲線C的參數(shù)方程是
y=sinθ+1
x=cosθ
(θ是參數(shù)),若以O為極點,x軸的正半軸為極軸,取與直角坐標系中相同的單位長度,建立極坐標系,求曲線C的極坐標方程.
D.選修4-5:不等式選講
已知關于x的不等式|ax-1|+|ax-a|≥1(a>0).
(1)當a=1時,求此不等式的解集;
(2)若此不等式的解集為R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理科)已知函數(shù)f(x)=
-x3+ax2+bx,(x<1)
clnx,(x≥1)
的圖象在點(-2,f(-2))處的切線方程為16x+y+20=0
(1)求實數(shù)a、b的值
(2)曲線y=f(x)上存在兩點M、N,使得△MON是以坐標原點O為直角頂點的直角三角形,且斜邊MN的中點在y軸上,求實數(shù)c的取值范圍
(3)當c=e時,討論關于x的方程f(x)=kx(k∈R)的實根個數(shù).

查看答案和解析>>

同步練習冊答案