【題目】已知拋物線,過其焦點(diǎn)作斜率為1的直線交拋物線,兩點(diǎn),且線段的中點(diǎn)的縱坐標(biāo)為4.

(1)求拋物線的標(biāo)準(zhǔn)方程;

(2)若不過原點(diǎn)且斜率存在的直線與拋物線相交于、兩點(diǎn),且.求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

【答案】(1);(2).

【解析】

(1)根據(jù)線段的中點(diǎn)的縱坐標(biāo)為4,直線的斜率為1,利用拋物線的方程,求解,即可得到拋物線的方程;

(2)設(shè)直線,聯(lián)立方程組,利用根與系數(shù)的關(guān)系,求得,,再由,即可得到結(jié)論.

(1)設(shè),兩點(diǎn)的坐標(biāo)分別為,

,兩式相減得.

,

又線段的中點(diǎn)的縱坐標(biāo)為4,直線的斜率為1,∴,∴.

即拋物線的標(biāo)準(zhǔn)方程為.

(2)設(shè)直線與拋物線交于點(diǎn),,

,

,∴,

,,

,即,

直線為,∴過定點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在棱長(zhǎng)為1的正方體中,點(diǎn)分別是棱的中點(diǎn),是側(cè)面內(nèi)一點(diǎn),若平面,則線段長(zhǎng)度的取值范圍是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為θ為參數(shù)),直線l的參數(shù)方程為.

(1)若a=1,求Cl的交點(diǎn)坐標(biāo);

(2)若C上的點(diǎn)到l的距離的最大值為,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程選講

在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸建立極坐標(biāo)系, 已知曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為

(Ⅰ)寫出曲線和直線的直角坐標(biāo)方程;

(Ⅱ)設(shè)直線過點(diǎn)與曲線交于不同兩點(diǎn),的中點(diǎn)為,的交點(diǎn)為,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】菜農(nóng)定期使用低害殺蟲農(nóng)藥對(duì)蔬菜進(jìn)行噴灑,以防止害蟲的危害,但采集上市時(shí)蔬菜仍存有少量的殘留農(nóng)藥,食用時(shí)需要用清水清洗干凈,下表是用清水x(單位:千克)清洗該蔬菜1千克后,蔬菜上殘留的農(nóng)藥y(單位:微克)的數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

y(微克)

x(千克)

3

38

11

10

374

-121

-751

其中

(I)根據(jù)散點(diǎn)圖判斷,,哪一個(gè)適宜作為蔬菜農(nóng)藥殘量與用水量的回歸方程類型(給出判斷即可,不必說明理由);

(Ⅱ)若用解析式作為蔬菜農(nóng)藥殘量與用水量的回歸方程,求出的回歸方程.(c,d精確到0.1)

(Ⅲ)對(duì)于某種殘留在蔬菜上的農(nóng)藥,當(dāng)它的殘留量低于20微克時(shí)對(duì)人體無害,為了放心食用該蔬菜,請(qǐng)估計(jì)需要用多少千克的清水清洗一千克蔬菜?(精確到0.1,參考數(shù)據(jù))

附:參考公式:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn),是以為圓心,半徑為的圓,點(diǎn)是圓上任意一點(diǎn),線段的垂直平分線和半徑所在的直線交于點(diǎn).

1)當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡方程

2)已知,是曲線上的兩點(diǎn),若曲線上存在點(diǎn),滿足為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓Cx2+y2+2x4y+30

1)若直線lx+y0與圓C交于A,B兩點(diǎn),求弦AB的長(zhǎng);

2)從圓C外一點(diǎn)Px1y1)向該圓引一條切線,切點(diǎn)為MO為坐標(biāo)原點(diǎn),且有|PM||PO|,求使得|PM|取得最小值的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正四棱錐中,O為頂點(diǎn)S在底面ABCD內(nèi)的投影,P為側(cè)棱SD的中點(diǎn),且.

(1)證明:平面PAC.

(2)求直線BC與平面PAC的所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (為實(shí)常數(shù))

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若,求不等式的解集;

(3)若存在兩個(gè)不相等的正數(shù)、滿足,求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案