已知四棱錐S-ABCD,底面為正方形,SA⊥底面ABCD,AB=AS=a,M、N分別為AB、SC中點(diǎn).
(Ⅰ)求四棱錐S-ABCD的表面積;
(Ⅱ)求證:MN平面SAD.
(Ⅰ)∵SA⊥底面ABCD,∴SA⊥AB,SA⊥AD,SA⊥BC.
又BC⊥AB,∴BC⊥平面SAB,∴BC⊥SB,同理,CD⊥SD,(3分)
∴△SAB≌△SAD,△SBC≌△SCD.
又∵SB=
2
a,∴S表面積=2S△SAB+2S△SBC+SABCD
=
1
2
a2+2×
1
2
a•
2
a+a2=(2+
2
)a2
.(7分)
(Ⅱ)取SD中點(diǎn)P,連接MN、NP、PA,則NP=
1
2
CD,且NPCD.(9分)
又AM=
1
2
CD,且AMCD,∴NP=AM,NPAM,∴AMNP是平行四邊形.(12分)
∴MNAP,而AP?平面SAD,MN不在平面SAD內(nèi),∴MN平面SAD.(14分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在△ABC中,AB=AC=5,BC=6,PA⊥平面ABC,PA=8,求點(diǎn)P到BC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

以下四個(gè)結(jié)論:
①若a?α,b?β,則a,b為異面直線;
②若a?α,b?α,則a,b為異面直線;
③沒(méi)有公共點(diǎn)的兩條直線是平行直線;
④兩條不平行的直線就一定相交.
其中正確答案的個(gè)數(shù)是( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,三棱柱ABC-A1B1C1中,D、E分別是棱BC、AB的中點(diǎn),點(diǎn)F在棱CC1上,已知AB=AC,AA1=3,BC=CF=2.
(1)求證:C1E平面ADF;
(2)若點(diǎn)M在棱BB1上,當(dāng)BM為何值時(shí),平面CAM⊥平面ADF?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在直三棱柱ADE-BCF中,∠ADE=90°,AD=AE=EF=2,M,N分別是AF,BC的中點(diǎn).
(1)求證:MN平面CDEF;
(2)求多面體A-CDEF的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

a,b是空間兩條不相交的直線,那么過(guò)直線b且平行于直線a的平面(  )
A.有且僅有一個(gè)B.至少有一個(gè)
C.至多有一個(gè)D.有無(wú)數(shù)個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知四棱錐P-ABCD的底面是正方形,PA⊥底面ABCD,且PA=AD,點(diǎn)M、N分別為側(cè)棱PD、PC的中點(diǎn)
(1)求證:CD平面AMN;
(2)求證:AM⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且側(cè)面PAB是正三角形,平面PAB⊥平面ABCD,E是棱PA的中點(diǎn).
(1)求證:PC平面EBD;
(2)求三棱錐P-EBD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐P-ABCD的底面是邊長(zhǎng)為1的正方形,側(cè)棱PA⊥底面ABCD,且PA=2,E是側(cè)棱PA上的動(dòng)點(diǎn).
(I)求四棱錐P-ABCD的體積;
(Ⅱ)如果E是PA的中點(diǎn),求證:PC平面BDE;
(Ⅲ)探究:不論點(diǎn)E在側(cè)棱PA的任何位置,BD⊥CE是否都成立?若成立,證明你的結(jié)論;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案