已知空間三點
,則以AB,AC為邊的平行四邊形的面積
____
,則向量
在
方向上的射影為
,而
,所以
邊上的高
,故以
為邊的平行四邊形的面積為
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在
中,
,
,點
在邊
上,設
,過點
作
交
于
,作
交
于
。沿
將
翻折成
使平面
平面
;沿
將
翻折成
使平面
平面
.
(1)求證:
平面
;
(2)是否存在正實數(shù)
,使得二面角
的大小為
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
空間直角坐標系中,點(-2, 1, 9)關于x軸對稱的點的坐標是
A.(-2, 1, 9) | B.(-2, -1, -9) | C.(2, -1, 9) | D.( 2, 1, -9) |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖所示,在邊長為
的正方形
中,點
在線段
上,且
,
,作
,分別交
,
于點
,
,作
,分別交
,
于點
,
,將該正方形沿
,
折疊,使得
與
重合,構成如圖所示的三棱柱
.
(1)求證:
平面
;
(2)求四棱錐
的體積;
(3)求平面
與平面
所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在四棱錐
P—ABCD中,平面
PAB⊥平面
ABCD,底面
ABCD是邊長為2的正方形,△
PAB是等邊三角形.
1、求
PC與平面
ABCD所成角的正弦值;
2、求二面角
B—AC—P的余弦值;
求點
A到平面
PCD的距離.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在長方體
中,已知DA=DC=4,DD
1=3,求異面直線A
1B與B
1C所成角的余弦值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在三棱錐
P-
ABC中,
AC=
BC=2,∠
ACB=90°,
AP=
BP=
AB,
PC⊥
AC.
(Ⅰ)求證:
PC⊥
AB;
(Ⅱ)求直線BC與平面APB所成角的正弦值
(Ⅲ)求點
C到平面
APB的距離.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知空間四邊形ABCD中,O是空間中任意一點,
點M在OA上,且OM=2MA,N為BC中點,則
=( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設
,
,
,
.記
為平行四邊形ABCD內(nèi)
部(不含邊界)的整點的個數(shù),其中整點是指橫、縱坐標都是整數(shù)的點,則函數(shù)
的值域
為()
查看答案和解析>>